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Homework 7 

26 October 2006 

Problem 1 

There are a few ways to solve this problem, one could formulate it as a 
ODE or as a DAE (We are going to formulate the problem as a ODE). The 
governing equation in the problem are given below. ∣ ∣2
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where the friction factor fD can be calculated as follows. 

24fD = 
Re [ ] Re < 2100 

√√1 = −2 log10 
(e/Dp) + 2.51 Re > 4000 (3) 

fD 
3.7 fDRe 

In this formulation we evaluate the value of vp using equation (1) in terms 
of h and dh . The friction factor can be calculated using vp or in terms of h

dt 
and dh . Ofcourse none of this needs to be done analytically. Everything is 

dt 
coded as a matlab function. Using this friction factor and vp, which are both 
functions of h and dh , we can get one single equation which can be written 

dt 
as g(h, dh ) = 0. This equation can be solved to obtain a value of dh for any 

dt dt 
given value of h. The scheme outlined here can be used to solve the problem 
and calculate the height of the tank at any given point in time. We can stop 
the ode from integrating on after the height has reached 0, we use events 
function.To calculate the volume of the liquid in tank we use the equation 

dV π[D(h)]2 

= 
dh 4 
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and integrate it. For the implimentation of this method see the function 
problem1. A sample run with the program is shown below 

>> [t,h]=problem1; 
The tank gets empty at time: 2529.8923 s 
The height and volume of water in the tank are shown below. 
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0 500 1000 1500 2000 2500 3000

Time (sec)


The volume of water in tank 

0 500 1000 1500 2000 2500 3000

Time(sec)


0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

1.8 

2 
H

ei
gh

t (
m

) 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

V
ol

um
e 

(m
3 ) 

2


Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to 
Chemical Engineering, Fall 2006. MIT OpenCourseWare (http://ocw.mit.edu), 
Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. 



10.34 – Fall 2006 
Homework #7 - Solutions 

Problem 2 – CSTR Optimization (Beers’ text 5.B.4) 

In this problem, we wished to find the optimal operating condition for a CSTR in order to 
produce the maximum amount of [C].  We were given a reaction mechanism and the necessary 
rate constants, and we asked to vary the initial concentrations of A and B, the reactor temperature 
between 298 K and 335 K, and the reactor volume from 10 L to 10000 L.   

The solution procedure involves using a constrained optimization program (fmincon in Matlab) 
to solve the problem.  The other potential difficulty in the problem is that the we do not have an 
explicit cost function, but must solve for the steady-state concentrations in the CSTR.  This can 
be done using fsolve to solve the nonlinear equations, or using an ODE solver to integrate to a 
long time so that the reactor is at a steady state.  The general reactor equations are: 

d X  
= ν R + flow X − X  where  : R = k A B[ ] ∑ X n, n

V ([ ]  [ ]  in ) n n [ ][ ]  
dt n reactions Vrxtr 

In the above expression, vX,n is the stoichiometric coefficient of species X in reaction n, Rn is the 
rate of reaction n. At steady-state, the time derivative will be equal to zero, yielding a set of 
nonlinear equations. 

One notable problem encountered in this problem was that fmincon would not vary the reactor 
volume variable when trying to perform the optimization.  This problem could be remedied in 
several ways. Perhaps the best way was to scale this variable, one possibility was to make the 
optimization variable LN(V_rxtr).  What this does is to effectively make the variable smaller, 
and a unit change in the scaled variable will make a much larger change in the cost function that 
a unit change in the unscaled variable.  Another way to improve the optimizer performance when 
using unscaled variables was to increase the tolerances (TolFun, TolX, and TolCon).  Making 
these small helped to gain a true solution for a wide range of initial guesses.  Matlab codes that 
solve the problem using scaling and an ODE solver, and well as solving the unscaled problem 
using an ODE solver and fsolve are included. 

The optimal reactor operating conditions are: 

Inlet [A] = 1.3515 M
Inlet [B] = 0.64845 M
Reactor Temperature = 298 K
Reactor Volume = 478.896 L 

Outlet [C] = 0.24913 M 
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The following plots are for diagnostic reason only, and were not required for the homework: 
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This plot simply serves to show that 
the fitted value of A and EA for the rate 
constant are correct and fit the data 

In the cases where an ODE solver is 
used to estimate the SS condition of the 
reactor, it is useful to run the time-
dependence to convince yourself that 
you integrating to a large enough time 
to ensure that a SS is achieved.  This is 
not a guarantee that all parameters sets 
encountered during the optimization 
yield a SS at this length of time. 

Since the reactor volume was giving us 
problems, it is useful to see how the cost 
function varies with V_rxtr at the 
“optimal” solution returned by fmincon.  
In this case, you can see that the fmincon 
solution appears to be correct.  If the 
volume was not adjusted to its optimum 
value by fmincon, the open circle would 
not be at the minimum of the cost 
function. 
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Problem 3 – Chemical Equilibria 

This problem with chemical equilibria in a system where the reactions are not known, and the 
assumption is that there are enough reactions that connect the species that there are no 
stoichiometric constraints imposed by reactions.  This could also be considered the “absolute” 
equilibrium condition of the system for a given initial condition (meaning that this will be the 
absolute lowest Gibbs free energy obtainable for the given conditions).   

The cost function was set up in the problem for you, and essentially was minimizing the total 
Gibbs free energy of the system. 

Gtotal = ∑ ni ⎜
⎛ 
Gi

o + RT  ln ⎜⎜
⎛ ni ⎟⎟

⎞
⎟
⎞


species ⎝
⎜ ⎝∑ni ⎠⎠

⎟


What you end up with is an optimization problem based on the number of moles each species. 
The constraints on the system are two-fold.  The first is obvious and is that all species must have 
a number of moles that is greater than zero (in this problem, the lower bound actually needs to be 
set to a number greater than zero, if not, the natural log term will cause problems).  The other 
constraint is based on the atom balances, saying that the total moles of H, C, and O initially in 
the system must be equal to the number of moles of H, C, and O at equilibrium.  This type of 
constraint can be written as follows: 

⋅ = A nA n  ⋅ jk eq jk 0 

where the elements of Ajk are number of j atoms in species k.  We can then use fmincon to solve 
this optimization problem. 

Part A: 

Consider a constant T and P equilibrium reactor, with T = 1000 K and P = 1 atm.  The initial 

charge of reactants is: 2 moles CH4, 3 moles H2O, 0.5 moles CO, and 1 mole of H2.  Give the 

number of moles of each species at equilibrium, as well as the corresponding mole fraction.   


Total moles initially: 6.5 

Initial Volume (L): 533.39 


Total moles at equilibrium: 10.0216 

Final Volume (L): 822.3757 


CH4: mole fraction: 0.02387, number of moles: 0.23918 

H2O: mole fraction: 0.08495, number of moles: 0.85129 

CO: mole fraction: 0.19015, number of moles: 1.90558 

CO2: mole fraction: 0.03545, number of moles: 0.35524 

H2: mole fraction: 0.66397, number of moles: 6.65402 

HOOH: mole fraction: 0.00163, number of moles: 0.01632 

HO2: mole fraction: 9.98e-014, number of moles: 1.00e-012 
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Part B: 

The species HO2 is a radical species and would typically be found in very small quantities.  What 

would be the approximate number of moles at equilibrium for HO2 estimated using the 

concentrations of the major species?  Does the value found using the minimization make sense, 

explain? 


The idea of this part was to show that you cannot always trust the numerical estimates when you 
have many orders of magnitudes between variables.  If you played with the tolerances in 
fmincon, you may have found that the number of moles of HO2 found using fmincon typically be 
at the lower bound set for the solver, even if it is set at 1e-14.   

However, there is a manual technique that can be used to estimate the concentration of a minor 
species in equilibrium with other major species.  The inherent assumption is that the major 
species’ concentrations are constant and unaffected by changes in the minor species 
concentration. First, you have to think of an arbitrary reaction that relates the major species the 
minor species.  This reaction can be anything you want and does not have to be physical in any 
way. Two such reactions for this system could be: 

4H O U 3H + 2HO or 2HOOH U H + 2HO 2 2 2 2 2 

Then you can write an equilibrium expression for this reaction in terms of the Gibbs free 
energies of the species: 

⎛ −∆G ⎞ ⎛ φ̂  y P  ⎞
ν i
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⎟ and KA =∏⎜ i i 

0 ⎟
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If you assume that the system behave ideally, then phi = 1 and the following holds: 
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We will take the 2nd reaction listed above: 2HOOH Ù H2 + 2HO2. The delta G of reaction for 
this can be calculated to be 284120 J/mole. 

⎛ −284120 ⎞ y y2 y2 

exp ⎜ ⎟= H 
2
2 HO  2 ⇒ yHO = HOOH ⋅1.4406 ×10−15 = 7.593×10−11 

⎝ 8.314 × 1000 ⎠ yHOOH 
2 yH2 

The approximate number of moles should be 7.61x10-10 . This shows that the value calculated by 
fmincon is incorrect, and even inconsistent with the given data.  For numerical reason, this very 
small number cannot be calculated accurately, and changes depending on the tolerances given.   
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