10.302 Fall 2004 Exam 1 Wednesday, October 13, 2004

Problem 1 (40 points)

A very long composite cylinder consists of two concentric cylinders. See attached sketch. The inner cylinder of radius r_1 has no heat generation. The outer cylindrical shell, with inner radius r_1 and outer radius r_2 , is capable of being heated at a uniform volumetric heat generation rate of \dot{q} . The two cylinders are in intimate thermal contact. The outside of the cylindrical shell is immersed in a flowing fluid with temperature T_{∞} far from the cylinder and heat transfer coefficient h. The thermal conductivity, heat capacity, and density of the inner cylinder are k_1 , c_1 , and ρ_1 , respectively. The values of these three thermal properties for the cylinderical shell are k_2 , c_2 , and ρ_2 . Initially, the temperature of the entire composite cylinder, T_i , is equal to the ambient temperature, T_{∞} , and there is no heat generation $\dot{q} = 0$ in the outer cylindrical shell. At t = 0 the heater is turned on and the outer cylindrical shell is heated at rate \dot{q} .

- a) (5) Write the heat diffusion equation that describes the unsteady heat transfer within the inner cylinder. Specify appropriate boundary and initial conditions.
- b) (5) Write the heat diffusion equation that describes the unsteady heat transfer rate within the outer cylindrical shell. Specify appropriate boundary and initial conditions.
- c) (15) Sketch a series of temperature profiles versus radial position at different times. Include the initial profile at t = 0, the steady state profile and two intermediate profiles. Be sure to identify the shapes of the curves (e.g. linear, hyperbolic, parabolic, etc.). Specify slopes and relative magnitudes at r_1 , and r_2 . Use the attached template for the sketch.
- d) (10) At steady state, find an equation for the temperature profile in the inner cylinder and another equation for the temperature profile in the cylindrical shell.
- e) (5) Find an expression for the centerline temperature at steady state.

TEMPLATE

Problem 2 (60 points)

The solid, cylindrical brass rod used in the 10.302 Experiment One, Extended Surface Heat Conduction, is 1 cm in diameter and 35 cm long, with eight thermocouples placed along its length at 5 cm intervals. The thermal conductivity, heat capacity, and density of the rod are $121 \frac{W}{mK}$, $380 \frac{J}{kgK}$, and $8500 \frac{kg}{m^3}$, respectively. The heat transfer coefficient, including contributions from radiation and convection, is $17 \frac{W}{m^2K}$.

At steady state, the temperature at the heated end of the rod, T_1 , is 60°C. Ambient temperature is 20°C.

- a) (5) Find the temperature at the tip of the rod, T_8 .
- b) (5) How much heat q_f is supplied to the rod at T_1 , at steady state?
- c) (10) It is known that it took 100 minutes for a steady state temperature profile to be established in the fin. How long would it take if the rod were twice as long, i.e., L = 0.70m? An answer which is accurate to within 20% will suffice.

The rod is now covered with a concentric cylinder of high quality foam insulation. The inner diameter of this insulation is 1 cm and the outer diameter is 2 cm. The insulation has negligible thermal mass (low density, low heat capacity) and a thermal conductivity of $0.030 \frac{W}{mK}$. The same amount of heat q_f is supplied to the rod at T₁ as found in part b. (If you do not have an answer for part b, assume q_f = 2.5W.)

- d) (20) Calculate the appropriate new value of the Biot number. Is an analysis of the fin type still appropriate?
- e) (5) Calculate the value of the steady state temperature at T_1 .
- f) (5) Find the steady state temperature at the tip of the rod, T_8 .
- g) (10) Estimate the time it would now take to attain steady state.

The equation which describes the response of a finite fin to a step change in heat flux is

$$\theta(x,t) = \theta_{ss} - \theta_b \frac{\tanh mL}{mL} e^{-\alpha m^2 t} - \theta_b \sum_{n=1}^{\infty} \frac{2mL \tanh mL}{(mL)^2 + (n\pi)^2} e^{-((n\pi)^2 + (mL)^2)\frac{d\pi}{L^2}} \cos \frac{n\pi m}{L}$$

$$\theta_{\rm ss} = \theta_{\rm b} \, \frac{\cosh m(L-{\rm x})}{\cosh mL}$$

Description of Parameters:

Symbol	Definition	Unit
θ_b	$\theta_{\rm b} = \theta_{\rm ss}$ @ x=0	°C or K
m	$m = (hP/kA)^{1/2}$	m^{-1}
L	Length of the rod	m
h	Heat transfer coefficient	W/m^2K
Р	Perimeter	m
k	Thermal conductivity	W/mK
А	Cross sectional area	m^2
α	Thermal diffusivity	m^2/s