LECTURE I: PERFORMANCE, PROPERTIES AND SELECTION

EMERGENT MATERIALS WORKSHOP THE ECOLOGY OF CONSTRUCTION MATERIALS

- Complex system: materials components, assemblies, devices, building systems
- Complex process: extraction, refining, processing, manufacturing, construction
- Inception, life cycle

PROPERTIES

- Material properties: intrinsic, extrinsic
- Material families
 - 1. Metals
 - 2. Polymers
 - 3. Ceramics
 - 4. Composites
 - 5. Natural materials

SELECTION

- Current process
- Analogs for design
- Methodologies of selection

PROPERTIES

SELECTION

References

Basalla, George. (1988) The Evolution of Technology. Cambridge University Press, Cambridge, UK.

Beukers, Adriaan van Hinte, Ed (1998) Lightness: the inevitable renaissance of minimum energy structures. 010 Publishers, Rotterdam.

Cowan, Henry J., Smith, Peter R. (1988) The Science and Technology of Building Materials. Van Nostrand Reinhold, New York.

Daniels, Klaus (1997) The Technology of Ecological Building, Basic Prinicples and Measures, Examples and Ideas. Birkhauser, Munich.

Daniels, Klaus (1998) Low-Tech Light-Tech High-Tech, Building in the Information Age. Birkhauser, Munich.

Gregotti, Vittorio (1996) Inside Architecture. The MIT Press, Cambridge.

Peters, Tom F. (1996) Building the Nineteenth Century. MIT Press, Cambridge.

Turner, R. Gregory (1986) Construction Economics and Building Design. Van Nostrand Reinhold, New York.

- Complex system: materials components, assemblies, devices, building systems
- Complex process: extraction, refining, processing, manufacturing, construction
- Inception, life cycle

PROPERTIES

SELECTION

References

Alberti, Leon Battista. [1550] 1999. On the Art of Building in Ten Books, Cambridge: MIT Press.

Ford, Edward. 1996. *Details of Modern Architecture, Volume 2.* Cambridge: MIT Press.

Strike, James. 1991. Construction into Design, The Influence of New Methods of Construction on Architectural Design, 1690-1990. Butterworth-Heinemann Ltd, Oxford.

Holton, Gerald (1996) On the Art of Scientific Imagination. In: Managing Innovation. Dædalus, Journal of the American Academy of Arts and Sciences, Spring 1996, pp.183-208.

National Materials Advisory Board (2000) Materials in the New Millenium: Responding to Society's Needs. National Academy Press, Washington, DC.

Moavenzadeh, Fred ed. 1990. Concise Encyclopedia of Building & Construction Materials. Cambridge, MIT Press.

- Complex system: materials components, assemblies, devices, building systems
- Complex process: extraction, refining, processing, manufacturing, construction
- Inception, life cycle

PROPERTIES

SELECTION

References

Adriannse, A. Bringezu, S. Hammond, A. Moriguchi, Y. Rodenburg, E. and others (1997) Resource flows - The material basis of industrial economies. World Resource Institute, Washington D.C.

Ayers, R.U. (1994) Industrial Metabolism: Theory and Policy. In: The Greening of Industrial Ecosystems, National Academy Press, Washington, DC:pp. 23-37.

Formoso, C.T. Soibelman L. De Csare, C. Isatto, E.L. (2002) Material waste in building industry: main causes and prevention. Journal of ConstructionEngineering and Management, Vol.128, No.4: pp.316-325.

Geiser Kenneth. 2001. Materials Matter: towards a sustainable materials policy. MIT Press. Cambridge, Massachusetts. 2001.

Mikesell RF. 1995. The limits to growth, a reappraisal. Resources Policy 21(2): 127-131.

Matos, G. Wagner, L. (1998) Consumption of Materials in the United States, 1990-1995. USGS Report, Denver.

- Complex system: materials components, assemblies, devices, building systems
- Complex process: extraction, refining, processing, manufacturing, construction
- Inception, life cycle

PROPERTIES

SELECTION

References

Kotaji, S. Schuurmans, A. Edwards, S. (2003) Life-Cycle Assessment in Building and Construction, SETAC North America, Raleigh, USA.

Wernick I.K. Herman, R. Govind S. Ausubel J.H. (1996) Materialization and Dematerialization: Measures and Trends. In: The Liberation of the Environment. Dædalus, Journal of the American Academy of Arts and Sciences. Summer 1996, pp. 171-197.

Smith S.D. (2003) USGS Statistical Summary. United States Geological Survey, March 2003.

- Complex system: materials components, assemblies, devices, building systems
- Complex process: extraction, refining, processing, manufacturing, construction
- Inception, life cycle

Period of Indirect Influence

Period of Direct Influence

PROPERTIES

SELECTION

References

Ashby Michael F. Jones David RH. 2001. Engineering Materials I: an introduction to their properties and applications. Butterworth-Heinemann. 2001.

Ashby Michael F. Jones David RH. 2001. Engineering Materials II: an introduction to microstructures processing and design. Butterworth-Heinemann. 2001.

Ashby Michael F. Johnson Kara. 2002. Materials and Design: The Art and Science of Materials Selection in Product Design. Butterworth-Heinmann, Oxford.

- Material properties
- Material families

•

PROPERTIES

SELECTION

References

Moavenzadeh, Fred, Editor (1990) Concise Encyclopedia of Building & Construction Materials. Pergamon, Oxford, UK.

Material properties:

- Intrinsic
 - mechanical
 - physical
- Extrinsic

A: aluminum

B: brick

C: concrete

G: glass

P: polymers

R: copper

S(n): steel, non residential

S(r): steel

W(n): wood, non-residential

W(r): wood, residential

Sources: various

US materials use in construction

PROPERTIES

SELECTION

References

CES InDepth

And previous Ashby pubs.

Material properties:

- Intrinsic
 - mechanical
 - physical
- Extrinsic

For **metals**, the compressive strength is the same as the tensile yield strength.

Polymers are approximately 20% stronger in compression than in tension.

Foams are linearly elastic up to a strain of between 0.5 and 5%. Beyond the elastic limit the stress-strain curve has a much lower slope: low density foams have an almost horizontal plateau; denser ones have a rising stress-strain curve. The database stores three measures of the compressive strength. The first is the stress at a compressive strain of 5% (roughly, at the elastic limit in compression), the second is the stress at 25% strain (roughly the middle of the plateau) and the last is the stress at 50% strain (the end of the plateau).

For **ceramics**, compressive strength is governed by crushing and is much larger than the tensile strength . Typically

Composites which contain fibres (including natural composites like wood) are a little weaker (up to 30%) in compression than tension because the fibres buckle.

For **continuous fibre, polymer composites,** where no data was available, the compressive strength was calculated using the Maximum Stress Failure Criteria (see [44]).

Wood, often, is used to support compressive loads: railway sleepers, pallets, frames of buildings, packaging for heavy objects are examples. The compressive strength is important in such applications.

Three strength properties of woods are widely reported (Forest Product Laboratory [27]:the compressive crushing-strength, s_c , the modulus of rupture (or bending-strength) s_{MOR} , and the shear-strength parallel to the grain, t_{\parallel} . We define these first, before going on to the elastic limit, tensile strength and endurance limit which were frequently estimated from them to make the database.

property families	individual properties		
	ductility		
	elastic moduli		
intrinsic	yield strength		
	tensile strength		
mechanical	compressive strength		
÷	L toughness		
physical H	density		
	thermal conductivity		
	thermal diffusivity		
thermal H	melting temperature		
	maximum service temperature		
	linear thermal expansion coefficient		
ontical	radiation transmission		
	color		
dotoriorativo	corrosion		
	mechanical wear		
extrinsic			
economic	capital cost - construction		
economic	life cycle cost		
	energy consumption (embodied)		
<u> </u>	material use (MFA)		
environmental	pollution and greenhouse gases		
·	ecology (ecological rucksack)		
	toxicity, IAQ, well-being		
	poverty alleviation		
sociotal	safety		
Societai	health		
	social equity		
	historical resonance		
cultural	theoretical ramifications		
i	L character		

PROPERTIES

SELECTION

References

Ashby Michael F. Jones David RH. 2001. Engineering Materials I: an introduction to their properties and applications. Butterworth-Heinemann. 2001.

Material properties -> families:

PROPERTIES

SELECTION

References

Ashby Michael F. Jones David RH. 2001. Engineering Materials I: an introduction to their properties and applications. Butterworth-Heinemann. 2001.

Material families:

- Metals
- Polymers
- Ceramics
- Natural
- Composites

PERFORMANCE	Material families:	common	
	• nonferrous	nonferrous metal	pure copper
			brass Cu + Zn
SELECTION		copper Cu	bronze Cu + Sn(10-30%)*
References		zinc Zn	Cupronickel Cu + Ni(30%)
Ashby Michael F. Jones David RH. 2001. Engineering Materials I: an introduction to			1000 series**
their properties and applications. Butterworth-Heinemann. 2001.		Sn	>99% AI 2000 series
		nickel Ni	AI + 4Cu + Mg,Si,Mn 3000 series
			AI + 1Mn 4000 series
		aluminum	AI + Si 5000 series
			AI + 3Mg,0.5Mn 6000 series
		Mg	AI + 0.5Mg,0.5Si 7000 series
		manganese	AI + 6Zn + Mg,Cu,Mn Casting alloys
			AI + 1151 Al-lithium alloys
		titanium	
		Ti	Ti-6 Al 4V
		lead Pb	
		Chromium	
		Cr	
		h	

PERFORMANCE PROPERTIES	Material families: • Metals • alloying metals	copper and alloying metals	bronzes - cast alloys
SELECTION		copper	pre-patinated Tin bronzes laminated Leaded tin bronzes
References		Cu	Cu-Sn-Ni alloys Nickel-tin bronzes
Ashby Michael F. Jones David RH. 2001. Engineering Materials I: an introduction to their properties and applications. Butterworth-Heinemann. 2001.		tin Sn nickel	bronzes Cu-Sn-P alloys Cu-Sn-P alloys Cu-Sn-Pb-P
		Ni aluminum Al	Cu-Al alloys Cu-Al alloys Cu-Si alloys Copper-silicon alloys
		lead Pb	brasses - cast alloys Cu-Sn-Zn alloys Red, semi-red, yellow
			Cu-Zn-Si alloys Silicon brasses Leaded yellow brasses
		zinc Zn	brasses brasses Cu-Bi & (Cu-Bi-Se) Bismuth(selenium) brasses brasses - wrought alloys Cu-Zn alloys Cu-Zn-Pb leaded brasses
			Cu-Zn-Sn alloys tin brasses

PROPERTIES

SELECTION

References

Ashby Michael F. Jones David RH. 2001. Engineering Materials I: an introduction to their properties and applications. Butterworth-Heinemann. 2001.

Material families: • Polymers

PROPERTIES

SELECTION

References

Ashby Michael F. Jones David RH. 2001. Engineering Materials I: an introduction to their properties and applications. Butterworth-Heinemann. 2001.

- Current process
- Analogs for design
- Methodologies of selection

PROPERTIES

SELECTION

References

Image from MRS web site:

(http://www.mrs.org/publications/ bulletin/2005/feb/feb05_imagegall ery.pdf)

Benyus, J. (2002) Biomimicry.Perennial Publishers, New York.

Oosterhius, Kas (2000) Smart Skins for the Hyperbody. Techniques Architecture, 2000, pp. 87-93.

Watson, Donald (1997) Architecture, Technology, and Environment. Journal of Architectural Education, American Collegiate Schools of Architecture, 1997, pp. 119-126.

Schlaich, J. (2001) A Plea for Concrete Construction in Keeping with the Nature of the Material. DETAIL, Concrete Construction, Vol 1: pp. 28,29.

McDonough, William Braungart, Michael (2001) The Next industrial Revolution. Video produced by Earthome

- Analogs for design
 - biomimicry

PROPERTIES

SELECTION

References

Basalla, George. (1988) The Evolution of Technology. Cambridge University Press, Cambridge, UK.

Beukers, Adriaan van Hinte, Ed (1998) Lightness: the inevitable renaissance of minimum energy structures. 010 Publishers, Rotterdam.

LeCorbusier (1931) Towards a New Architecture. John Rodker, London.

Pallasmaa, Juhani (1994) Six themes for the next millenium. The Architectural Review, Volume CXCVI, No. 1169, July, 1994, pp. 74-79.

- Analogs for design
 - biomimicry
 - other complex systems (vehicles)

PROPERTIES

SELECTION

References

See CES Manual (to be distributed)

- Next steps
 - Tutorial
 - Material family assignments
 - Software development template

