

Course Outline Spring 2011

Week 1:	Course Introduction	The Source
Week 2:	The Sensor	HDR Workshop (Stata Center)
Week 3:	Massing Studies	Where is the Sun?
Week 4:	Physical Model Building	Solar Gains Management
Week 5:	+++ Heliodon Measure	ments (Instructor Traveling) +++
Week 6:	Daylight Simulations	Light and Matter
Week 7:	Midterm Presentations I	Midterm Presentations II
Week 8:	+++ Spring	g Recess +++
Week 9:	Circadian Effects (Lockley)	Daylight Availability
Week 10:	Visual Comfort & Glare	Envelope Design
Week 11:	Patriots Day (no class)	Advanced Simulation Concepts
Week 12:	Electric Lighting Basics	Occupant Behavior & Controls
Week 13:	Integrating Light & Energy	Interior Design/Parametric Design
Week 14:	Final Presentations I	Final Presentations II
Week 15:	Daylighting in Practice	Field Trip

Definition of a 'well daylit space'

A space that is primarily lit with natural light and that combines a high occupant satisfaction with the visual and thermal environment with low overall energy use for lighting, heating and cooling.

1: The interplay of natural light and building form to provide a visually stimulating, healthful, and productive interior environment.

2: The replacement of indoor electric illumination needs by daylight, resulting in reduced annual energy consumption for lighting

3: The use of fenestration systems and responsive electric lighting controls to reduce overall building energy requirements (heating, cooling, lighting)

4: Dynamic control of fenestration and lighting to manage and control building peak electric demand and load shape

5: The use of daylighting strategies to minimize operating costs and maximize output, sales, or productivity

Five Daylighting Definitions

Architectural definition: The interplay of natural light and building form to provide a visually stimulating, healthful, and productive interior environment.

Lighting Energy Savings definition: The replacement of indoor electric illumination needs by daylight, resulting in reduced annual energy consumption for lighting

Building Energy Consumption definition: The use of fenestration systems and responsive electric lighting controls to reduce overall building energy requirements (heating, cooling, lighting)

Load Management definition: Dynamic control of fenestration and lighting to manage and control building peak electric demand and load shape

Cost definition: The use of daylighting strategies to minimize operating costs and maximize output, sales, or productivity

Performance Metrics

□ A metric is a `system of related measures that facilitates the quantification of some particular characteristic'.

Category	Metric	Chapter	
Daylight	Daylight Factor	10	
	Daylight Autonomy	10	
	Useful Daylight Illuminance	10	
Comfort	Direct Sunlight	6	
	Daylight Glare Probability	12	
	View	12	
Energy	Annual Loads	15	
	Equivalent Carbon Emissions	15	
	Direct Shading Studies	7	
	Solar Gains	7	
	Costs	15	

Comparative Analysis vs Benchmarks

□ A metric is a 'system of related measures that facilitates the quantification of some particular characteristic'.

□ Metric values for a particular design solution can either used for relative comparisons between alternative design solutions or for absolute comparison against a benchmark value.

□ Relative comparisons allow conclusions such as whether one design variant fulfills a design goal 'better' than another.

□ Comparisons against a benchmark value can be used to establish pass/fail criteria. The attraction of using a pass/fail criterion is that a design variant is effectively compared to all spaces that were used to establish the benchmark value. Ideally, this should have been a representative sample of all comparable buildings or spaces in the building stock.

'Quantitative' versus 'Qualitative' Propagata of the Daylighting Metrics Study: 'The degree of agreement between the experts was surprising given that the same individuals tend to frequently disagree when it comes to the development of quantitative performance metrics of imaginary daylit spaces.' In contrast, daylight factor predictions are much more divergent.

Fruitful Relationship between Simulations, Rules of Thumb and Physical Models

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

□ For latitudes below 50° there is also the potential to daylight interior spaces for 80% of core commercial hours. With 93% of the world)s population living at latitudes below 50°, daylighting can be considered to be a global solution for lighting buildings.

Climate Data

Dry Bulb Temperature [°C] Relative Humidity [%] Direct Solar Radiation [W/m²] Diffuse Horizontal Solar Radiation [W/m²] Wind speed [km/h] Wind direction [Degree]

Cloud Cover [%] Rainfall [mm]

Measuring Direct Solar Radiation

Radiometers installed on an automatic solar tracker (Photo Tom Stoffel, NREL)

 Parket

ces Ltd.

Typical Metereological Year

A Typical Meteorological Year (TMY) is defined as a set of real measured hourly values for dry temperature, for global, diffuse and direct normal solar radiation, and for wind velocity. The data are in true sequence within each month. The most important input variables are:

Dry Bulb Temperature [°C]

Relative Humidity [%]

Direct & Diffuse Solar Radiation [W/m²]

Wind Speed & Direction [km/h]

Note:

- Many simulations find TMY not stringent enough to meaningfully test the performance of a building under extreme weather conditions such as heat waves.
- There is a new set of weather data for the US every 12 years. We are currently at TMY3.
- □ Weather data will change due to climate change.

ginning of an EPW files
LOCATION, Boston, MA, USA, TMY94701, 725090, 42.35, -71.07, -5.0, 6.0
DESIGN CONDITIONS, 1, Climate Design Data 2005 ASHRAE Handbook, , Heating,
TYPICAL/EXTREME PERIODS, 6, Summer - Week Nearest Max Temperature For Pe
GROUND TEMPERATURES, 3, .5, ,, 0.47, -0.51, 1.23, 3.94, 11.03, 16.51, 20.20, 21.
HOLIDAYS/DAYLIGHT SAVINGS, No, 0, 0, 0
COMMENTS 1, TMY-94701 WMO#725090
COMMENTS 2, Ground temps produced with a standard soil diffusivity
DATA PERIODS,1,1,Data,Sunday, 1/ 1,12/31
1966,1,1,1,60,?0?0E7_0E0?0?9D0?9?9?9?9?0?0?9?9?9?9?9?9?9?9,12.8,7.8,72
1966,1,1,2,60,?0?0E7_0E0?0?9D0?9?9?9?9?0?0?0?0?0?0?0?9?9?9?9,12.8,7.8,72
1966,1,1,3,60,?0?0E7_0E0?0?9D0?9?9?9?9?0?0?9?9?9?9?9?9?9?9,12.2,7.6,73
1966,1,1,4,60,?0?0E7_0E0?0?9D0?9?9?9?9?0?0?9?9?9?9?9?9?9?9,11.7,7.4,75
1966,1,1,5,60,?0?0E7_0E0?0?9D0?9?9?9?9?0?0?0?0?0?0?9?9?9?9,11.1,7.2,77
1056 1 1 6 60 2020E7 0E02020E020202020202020202020202020 10 7 7 2 7 7

MIT OpenCourseWare http://ocw.mit.edu

4.430 Daylighting Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.