SMA 5212 - Numerical methods for Partial Differential Equations.

3nd Problem Set - Variational Methods

Solution

Design of a thermal fin

Problem Statement

The problem of designing a thermal fin to effectively remove heat from a surface has been considered. The two-dimensional fin, shown in Figure 1 is characterized by a five-component parameter vector, or "input," $\underline{\mu}=\left(\mu^{1}, \mu^{2}, \ldots, \mu^{5}\right)$, where $\mu^{i}=k^{i}, i=1, \ldots, 4$, and $\mu^{5}=\mathrm{Bi} ; \underline{\mu}$ may take on any value in a specified design set $\mathcal{D} \subset \mathbb{R}^{5}$.

Here k^{i} is the thermal conductivity of the $i^{t h}$ subfin (normalized relative to the post conductivity $k^{0} \equiv 1$); and Bi is the Biot number, a nondimensional heat transfer coefficient reflecting convective transport to the air at the fin surfaces. The post is of width unity and height four; the subfins are of fixed thickness $t=0.25$ and length $L=2.5$.

The steady-state temperature distribution within the fin, $u(\underline{\mu})$, is governed by the elliptic partial differential equation

$$
\begin{equation*}
-k^{i} \nabla^{2} u^{i}=0 \text { in } \Omega^{i}, i=0, \ldots, 4 \tag{1}
\end{equation*}
$$

Figure 1: Thermal Fin
u^{i} refers to the restriction of u to Ω^{i}. We must also ensure continuity of temperature and heat flux at the conductivity-discontinuity interfaces $\Gamma_{\mathrm{int}}^{i} \equiv \partial \Omega^{0} \cap \partial \Omega^{i}, i=1, \ldots, 4$, where $\partial \Omega^{i}$ denotes the boundary of Ω^{i} :

$$
\left.\begin{array}{rl}
u^{0} & =u^{i} \tag{2}\\
-\left(\nabla u^{0} \cdot \hat{\mathbf{n}}^{i}\right) & =-k^{i}\left(\nabla u^{i} \cdot \hat{\mathbf{n}}^{i}\right)
\end{array}\right\} \text { on } \Gamma_{\mathrm{int}}^{i}, i=1, \ldots, 4
$$

here $\hat{\mathbf{n}}^{i}$ is the outward normal on $\partial \Omega^{i}$. Finally, we introduce a Neumann flux boundary condition on the fin root

$$
\begin{equation*}
-\left(\nabla u^{0} \cdot \hat{\mathbf{n}}^{0}\right)=-1 \text { on } \Gamma_{\text {root }} \tag{3}
\end{equation*}
$$

which models the heat source; and a Robin boundary condition

$$
\begin{equation*}
-k^{i}\left(\nabla u^{i} \cdot \hat{\mathbf{n}}^{i}\right)=\operatorname{Bi} u^{i} \text { on } \Gamma_{\mathrm{ext}}^{i}, i=0, \ldots, 4, \tag{4}
\end{equation*}
$$

which models the convective heat losses. Here $\Gamma_{\text {ext }}^{i}$ is that part of the boundary of Ω^{i} exposed to the flowing fluid; note that $\cup_{i=0}^{4} \Gamma_{\text {ext }}^{i}=\Gamma \backslash \Gamma_{\text {root }}$.

The output considered was $T_{\text {root }}(\underline{\mu})$, the average steady-state temperature of the fin root normalized by the prescribed heat flux into the fin root.

$$
\begin{equation*}
T_{\text {root }}(\underline{\mu}) \equiv \ell^{O}(v)=\int_{\Gamma_{\text {root }}} v \tag{5}
\end{equation*}
$$

Part 1 - Finite Element Approximation

$\alpha)$ In the statement of the problem the strong form of the equations was described. To obtain the temperature distribution $u(\mu)$ inside the thermal fin, we need to solve (1), with the boundary conditions given in $(2),(3),(4)$. We want to verify that the solution of this problem will satisfy the weak formulation which is the starting point for the finite element method. In this question we assume that $u(\mu)$ is sufficiently smooth, so that integration by parts and relatedly Gauss and Green's theorems can be applied.

The weak form of the problem is to find $u(\underline{\mu}) \in X \equiv H^{1}(\Omega)$ which satisfies

$$
\begin{equation*}
a(u(\underline{\mu}), v ; \underline{\mu})=\ell(v), \forall v \in X \tag{6}
\end{equation*}
$$

where

$$
\begin{aligned}
a(w, v ; \underline{\mu}) & =\sum_{i=0}^{4} k^{i} \int_{\Omega^{i}} \nabla w \cdot \nabla v d A+\operatorname{Bi} \int_{\Gamma \backslash \Gamma_{\text {root }}} w v d S \\
\ell(v) & =\int_{\Gamma_{\text {root }}} v d S
\end{aligned}
$$

We want to show that

$$
\begin{equation*}
\underbrace{\sum_{i=0}^{4} k^{i} \int_{\Omega^{i}} \nabla u^{i}(\underline{\mu}) \cdot \nabla v d A}_{I_{1}}=-\operatorname{Bi} \int_{\Gamma \backslash \Gamma_{\mathrm{root}}} u^{i}(\underline{\mu}) v d S+\int_{\Gamma_{\text {root }}} v d S, \forall v \in X \tag{7}
\end{equation*}
$$

We start from I_{1} and apply Gauss theorem

$$
\begin{aligned}
I_{1} & =\sum_{i=0}^{4} k^{i} \int_{\Omega^{i}} \nabla u^{i}(\underline{\mu}) \cdot \nabla v d A \\
& =\sum_{i=0}^{4} k^{i}\left(\int_{\Omega^{i}} \nabla \cdot\left(v \nabla u^{i}(\underline{\mu})\right) d A-\int_{\Omega^{i}} v \nabla^{2} u^{i}(\underline{\mu}) d A\right) .
\end{aligned}
$$

The second term in the equation above vanishes, because from (1), $-k^{i} \nabla^{2} u^{i}=0$ in $\Omega^{i}, i=0, \ldots, 4$. For the first term we apply Green's theorem and

$$
I_{1}=\sum_{i=0}^{4} k^{i} \int_{\partial \Omega^{i}} v\left(\nabla u^{i}(\underline{\mu}) \cdot \hat{\mathbf{n}}^{i}\right) d S
$$

Since for each domain $\Omega^{i}, i=1, \ldots, 4$ the boundary can be decomposed as $\partial \Omega^{i}=\Gamma_{\mathrm{int}}^{i} \cup \Gamma_{\mathrm{ext}}^{i}, i=1, \ldots, 4$, and for domain $\Omega^{0}, \partial \Omega^{0}=\Gamma_{\mathrm{int}}^{0} \cup \Gamma_{\mathrm{ext}}^{0} \cup \Gamma_{\text {root }}$

$$
I_{1}=\sum_{i=0}^{4} k^{i} \int_{\Gamma_{\mathrm{ext}}^{i}} v\left(\nabla u^{i}(\underline{\mu}) \cdot \hat{\mathbf{n}}^{i}\right) d S+\underbrace{\sum_{i=0}^{4} k^{i} \int_{\Gamma_{\mathrm{int}}^{i}} v\left(\nabla u^{i}(\underline{\mu}) \cdot \hat{\mathbf{n}}^{i}\right) d S}_{I_{2}}+\int_{\Gamma_{\mathrm{root}}} v\left(\nabla u^{0}(\underline{\mu}) \cdot \hat{\mathbf{n}}^{i}\right) d S
$$

for the last integral $k^{0}=1$ was used. We next show that the term I_{2} is equal to zero.

$$
\begin{aligned}
I_{2} & =\sum_{i=1}^{4} k^{i} \int_{\Gamma_{\mathrm{int}}^{i}} v\left(\nabla u^{i}(\underline{\mu}) \cdot \hat{\mathbf{n}}^{i}\right) d S+\underbrace{\int_{\Gamma_{\mathrm{int}}^{0}} v\left(\nabla u^{0}(\underline{\mu}) \cdot \hat{\mathbf{n}}^{0}\right) d S}_{I_{3}} \\
& =\sum_{i=1}^{4} \int_{\Gamma_{\mathrm{int}}^{i}} v\left[k^{i}\left(\nabla u^{i}(\underline{\mu}) \cdot \hat{\mathbf{n}}^{i}\right)-\left(\nabla u^{0}(\underline{\mu}) \cdot \hat{\mathbf{n}}^{i}\right)\right] d S=0
\end{aligned}
$$

and vanishes from the continuity of heat flux boundary condition (2). Note that for I_{3} we have used the following expression

$$
I_{3}=\int_{\Gamma_{\mathrm{int}}^{0}} v\left(\nabla u^{0}(\underline{\mu}) \cdot \hat{\mathbf{n}}^{0}\right) d S=\sum_{i=1}^{4} \int_{\Gamma_{\mathrm{int}}^{i}} v\left(\nabla u^{0}(\underline{\mu}) \cdot \hat{\mathbf{n}}^{0}\right) d S=-\sum_{i=1}^{4} \int_{\Gamma_{\mathrm{int}}^{i}} v\left(\nabla u^{0}(\underline{\mu}) \cdot \hat{\mathbf{n}}^{i}\right) d S
$$

since $\Gamma_{\mathrm{int}}^{0}=\cup_{i=1}^{4} \Gamma_{\mathrm{int}}^{i}$, and $\hat{\mathbf{n}}^{0}=-\hat{\mathbf{n}}^{i}$ on $\Gamma_{\mathrm{int}}^{i}, i=1, \ldots, 4$. Therefore,

$$
I_{1}=\sum_{i=0}^{4} k^{i} \int_{\Gamma_{\mathrm{ext}}^{i}} v\left(\nabla u^{i}(\underline{\mu}) \cdot \hat{\mathbf{n}}^{i}\right) d S+\int_{\Gamma_{\mathrm{root}}} v\left(\nabla u^{0}(\underline{\mu}) \cdot \hat{\mathbf{n}}^{i}\right) d S .
$$

Now we apply the Neumann and Robin boundary conditions (3) and (4), to obtain

$$
I_{1}=-\sum_{i=0}^{4} \operatorname{Bi} \int_{\Gamma_{\mathrm{ext}}^{i}} u^{i}(\underline{\mu}) v d S+\int_{\Gamma_{\mathrm{root}}} v d S
$$

since $\cup_{i=0}^{4} \Gamma_{\text {ext }}^{i}=\Gamma \backslash \Gamma_{\text {root }}, I_{1}$ becomes

$$
I_{1}=-\mathrm{Bi} \int_{\Gamma \backslash \Gamma_{\mathrm{root}}} u(\underline{\mu}) v d S+\int_{\Gamma_{\text {root }}} v d S
$$

which is exactly expression (7), that we wanted to prove.
β) We want to show that

$$
u(\underline{\mu})=\arg \min _{w \in X} J(w)
$$

with

$$
\begin{equation*}
J(w)=\frac{1}{2} \sum_{i=0}^{4} k^{i} \int_{\Omega^{i}} \nabla w \cdot \nabla w d A+\frac{\mathrm{Bi}}{2} \int_{\Gamma \backslash \Gamma_{\mathrm{root}}} w^{2} d S-\int_{\Gamma_{\mathrm{root}}} w d S \tag{8}
\end{equation*}
$$

Let $w=u(\underline{\mu})+v$, since $X \equiv H^{1}(\Omega)$ (more precisely, $X=H^{1}(\Omega) \cap C^{0}(\Omega)$) is a linear space, then if v and $u(\underline{\mu}) \in X, w$ will also be a member of X. Starting from (7),

$$
\begin{aligned}
J(u(\underline{\mu})+v)= & \frac{1}{2} \sum_{i=0}^{4} k^{i} \int_{\Omega^{i}} \nabla(u(\underline{\mu})+v) \cdot \nabla(u(\underline{\mu})+v) d A+\frac{\mathrm{Bi}}{2} \int_{\Gamma \backslash \Gamma_{\mathrm{root}}}(u(\underline{\mu})+v)^{2} d S-\int_{\Gamma_{\mathrm{root}}}(u(\underline{\mu})+v) d S \\
= & \frac{1}{2} \sum_{i=0}^{4} k^{i} \int_{\Omega^{i}} \nabla u(\underline{\mu}) \cdot \nabla u(\underline{\mu}) d A+\frac{\operatorname{Bi}}{2} \int_{\Gamma \backslash \Gamma_{\mathrm{root}}}(u(\underline{\mu}))^{2} d S-\int_{\Gamma_{\text {root }}} u(\underline{\mu}) d S \\
& +\sum_{i=0}^{4} k^{i} \int_{\Omega^{i}} \nabla u(\underline{\mu}) \cdot \nabla v d A+\operatorname{Bi} \int_{\Gamma \backslash \Gamma_{\mathrm{root}}} u(\underline{\mu}) v d S-\int_{\Gamma_{\text {root }}} v d S \\
& +\sum_{i=0}^{4} k^{i} \int_{\Omega^{i}} \nabla v \cdot \nabla v d A+\operatorname{Bi} \int_{\Gamma \backslash \Gamma_{\mathrm{root}}} v d S \\
= & J(u(\underline{\mu}))+\delta J_{v}(u(\underline{\mu}))+a(v, v ; \underline{\mu}) .
\end{aligned}
$$

The first variation

$$
\delta J_{v}(u(\underline{\mu}))=\sum_{i=0}^{4} k^{i} \int_{\Omega^{i}} \nabla u(\underline{\mu}) \cdot \nabla v d A+\mathrm{Bi} \int_{\Gamma \backslash \Gamma_{\mathrm{root}}} u(\underline{\mu}) v d S-\int_{\Gamma_{\mathrm{root}}} v d S \equiv 0, \forall v \in X
$$

as was shown in question α. Therefore

$$
\begin{equation*}
J(u(\underline{\mu})+v)=J(u(\underline{\mu}))+a(v, v ; \underline{\mu}), \forall v \in X \tag{9}
\end{equation*}
$$

The last part of the proof is to prove that $a(v, v ; \underline{\mu})$ is a symmetric positive definite bilinear form.

- Symmetry

$$
\begin{aligned}
a(w, v ; \underline{\mu}) & =\sum_{i=0}^{4} k^{i} \int_{\Omega^{i}} \nabla w \cdot \nabla v d A+\mathrm{Bi} \int_{\Gamma \backslash \Gamma_{\text {root }}} w v d S \\
& =\sum_{i=0}^{4} k^{i} \int_{\Omega^{i}} \nabla v \cdot \nabla w d A+\mathrm{Bi} \int_{\Gamma \backslash \Gamma_{\text {root }}} v w d S \\
& =a(v, w ; \underline{\mu}), \forall w, v \in X .
\end{aligned}
$$

- Positive Definiteness. We will prove that $a(w, w ; \underline{\mu})>0, \forall w \in X, w \neq 0$. To start we consider only $a_{1}(w, v ; \underline{\mu})=\sum_{i=0}^{4} k^{i} \int_{\Omega^{i}} \nabla w \cdot \nabla v d A$, the first part of $a(w, v ; \underline{\mu})$. This is the pure Neumann problem, and as was discussed in the lecture notes has a non-trivial nullspace; any constant function c, makes $a_{1}(c, v ; \underline{\mu})=0$. For all other functions $w \in X, a_{1}(w, v ; \underline{\mu})>0$, therefore $\forall w \in X, w \neq c, a(w, v ; \underline{\mu})$ will be positive, since the second term in $a(u, v ; \underline{\mu})$ is non-negative. Finally if $w=c$,

$$
\begin{aligned}
a(c, c ; \underline{\mu}) & =\underbrace{\sum_{i=0}^{4} k^{i} \int_{\Omega^{i}} \nabla c \cdot \nabla c d A}_{=0}+\mathrm{Bi} \int_{\Gamma \backslash \Gamma_{\mathrm{root}}} c c d S \\
& =\operatorname{Bi} c^{2} s
\end{aligned}
$$

with s the perimeter of the Robin boundary. Since s and Bi are positive,

$$
a(c, c ; \underline{\mu})=\operatorname{Bi} c^{2} s \geq 0 \rightarrow c^{2} \geq 0
$$

so $a(c, c ; \underline{\mu})=0 \leftrightarrow c=0$. Therefore, we have proved that only $c=0$ will make $a(c, c ; \underline{\mu})=0$. Summarizing $a(w, w ; \underline{\mu})>0, \forall w \in X, w \neq 0$, and we have proved positive definiteness. A corollary of this proof, is that $a(w, v ; \underline{\mu})$ induces a norm, which is the energy norm $\|v\| \equiv a(v, v ; \underline{\mu})^{1 / 2}$.

So from (9), we can conclude that

$$
\begin{equation*}
J(u(\underline{\mu})+v) \geq J(u(\underline{\mu})), \forall v \in X, v \neq 0 \tag{10}
\end{equation*}
$$

the minimization principle has been verified.
γ) To obtain the discrete approximation to the continuous problem, we will use the linear finite element space

$$
X_{h}=\left\{v \in H^{1}(\Omega)|v|_{T_{h}} \in \mathbb{P}^{1}\left(T_{h}\right), \forall T_{h} \in \mathcal{T}_{h}\right\} .
$$

By applying standard Galerkin projection to X_{h}, the discrete problem becomes, find $u_{h}(\underline{\mu}) \in X_{h}$ such that

$$
\begin{equation*}
a\left(u_{h}(\underline{\mu}), v ; \underline{\mu}\right)=\ell(v), \forall v \in X_{h} \tag{11}
\end{equation*}
$$

the output of interest can be calculated similarly

$$
\begin{equation*}
T_{\text {root } h}(\underline{\mu})=\ell^{O}\left(u_{h}(\underline{\mu})\right) . \tag{12}
\end{equation*}
$$

To derive the elemental matrices we follow the same procedure presented in the lecture notes.

- Term $\int_{T_{h}^{k}} \nabla u \cdot \nabla v d A$.

We will derive the expression for linear elements. We consider an element T_{h}^{k} with three local nodes $\mathbf{x}_{1}^{k}=\left\{x_{1}^{k}, y_{1}^{k}\right\}, \mathbf{x}_{2}^{k}=\left\{x_{2}^{k}, y_{2}^{k}\right\}, \mathbf{x}_{3}^{k}=\left\{x_{3}^{k}, y_{3}^{k}\right\}$. Also let $\mathcal{H}_{1}^{k}, \mathcal{H}_{2}^{k}, \mathcal{H}_{3}^{k}$. be the restriction of the nodal functions that have support over the element T_{h}^{k}. These functions, from the definition of the finite element space are linear and satisfy $\mathcal{H}_{\alpha}^{k}\left(x_{\beta}^{k}\right)=\delta_{\alpha \beta}, \alpha, \beta=1, \ldots, 3$. Since \mathcal{H}_{α}^{k} are linear the following
expression can be used $\mathcal{H}_{\alpha}^{k}=c_{\alpha}+c_{x \alpha} x+c_{y \alpha} y, \alpha=1, \ldots, 3$. To obtain those coefficients we need to solve the following systems

$$
\left(\begin{array}{ccc}
1 & x_{1}^{k} & y_{1}^{k} \tag{13}\\
1 & x_{2}^{k} & y_{2}^{k} \\
1 & x_{3}^{k} & y_{3}^{k}
\end{array}\right)\left(\begin{array}{c}
c_{\alpha} \\
c_{x \alpha} \\
c_{y \alpha}
\end{array}\right)=\overbrace{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)}^{\alpha=1} \text { or } \overbrace{\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)}^{\alpha=2} \text { or } \overbrace{\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)}^{\alpha=3}
$$

The elemental matrix can readily be calculated since,

$$
A_{\alpha \beta}^{k 1}=\int_{T_{h}^{k}} \frac{\partial \mathcal{H}_{\alpha}^{k}}{\partial x} \frac{\partial \mathcal{H}_{\beta}^{k}}{\partial x}+\frac{\partial \mathcal{H}_{\alpha}^{k}}{\partial y} \frac{\partial \mathcal{H}_{\beta}^{k}}{\partial y} d A=(\text { Area })^{k}\left(c_{x \alpha} c_{x \beta}+c_{y \alpha} c_{y \beta}\right), \alpha, \beta=1, \ldots, 3
$$

Since the derivatives of the nodal functions are constant over each element T_{h}^{k}. An explicit form in terms of the coordinates follows

$$
\begin{align*}
\underline{B}_{1}^{k} & =\left(\begin{array}{ccc}
\left(y_{2}^{k}-y_{3}^{k}\right)\left(y_{2}^{k}-y_{3}^{k}\right) & \left(y_{2}^{k}-y_{3}^{k}\right)\left(y_{3}^{k}-y_{1}^{k}\right) & \left(y_{2}^{k}-y_{3}^{k}\right)\left(y_{1}^{k}-y_{2}^{k}\right) \\
\left(y_{3}^{k}-y_{1}^{k}\right)\left(y_{2}^{k}-y_{3}^{k}\right) & \left(y_{3}^{k}-y_{1}^{k}\right)\left(y_{3}^{k}-y_{1}^{k}\right) & \left(y_{3}^{k}-y_{1}^{k}\right)\left(y_{1}^{k}-y_{2}^{k}\right) \\
\left(y_{1}^{k}-y_{2}^{k}\right)\left(y_{2}^{k}-y_{3}^{k}\right) & \left(y_{1}^{k}-y_{2}^{k}\right)\left(y_{3}^{k}-y_{1}^{k}\right) & \left(y_{1}^{k}-y_{2}^{k}\right)\left(y_{1}^{k}-y_{2}^{k}\right)
\end{array}\right) \\
\underline{B}_{2}^{k} & =\left(\begin{array}{ccc}
\left(x_{2}^{k}-x_{3}^{k}\right)\left(x_{2}^{k}-x_{3}^{k}\right) & \left(x_{2}^{k}-x_{3}^{k}\right)\left(x_{3}^{k}-x_{1}^{k}\right) & \left(x_{2}^{k}-x_{3}^{k}\right)\left(x_{1}^{k}-x_{2}^{k}\right) \\
\left(x_{3}^{k}-x_{1}^{k}\right)\left(x_{2}^{k}-x_{3}^{k}\right) & \left(x_{3}^{k}-x_{1}^{k}\right)\left(x_{3}^{k}-x_{1}^{k}\right) & \left(x_{3}^{k}-x_{1}^{k}\right)\left(x_{1}^{k}-x_{2}^{k}\right) \\
\left(x_{1}^{k}-x_{2}^{k}\right)\left(x_{2}^{k}-x_{3}^{k}\right) & \left(x_{1}^{k}-x_{2}^{k}\right)\left(x_{3}^{k}-x_{1}^{k}\right) & \left(x_{1}^{k}-x_{2}^{k}\right)\left(x_{1}^{k}-x_{2}^{k}\right)
\end{array}\right) \\
\underline{A}^{k 1} & =\frac{1}{2\left|-x_{2}^{k} * y_{1}^{k}+x_{3}^{k} * y_{1}^{k}+x_{1}^{k} * y_{2}^{k}-x_{3}^{k} * y_{2}^{k}-x_{1}^{k} * y_{3}^{k}+x_{2}^{k} * y_{3}^{k}\right|}\left(\underline{B}_{1}^{k}+\underline{B}_{2}^{k}\right) \tag{14}
\end{align*}
$$

Note that for the area of the element T_{h}^{k} the formula

$$
(\text { Area) })^{k}=\frac{1}{2}| | \begin{array}{ccc}
1 & x_{1}^{k} & y_{1}^{k} \\
1 & x_{2}^{k} & y_{2}^{k} \\
1 & x_{3}^{k} & y_{3}^{k}
\end{array}| |
$$

was used.

- Term $\int_{\Gamma \backslash \Gamma_{\text {root }}} u v d S$.

This is an integral over the Robin boundary $\Gamma \backslash \Gamma_{\text {root }}$, and can be identified as the 1-d mass matrix. To evaluate the elemental matrix, we only need to look at a boundary segment S_{h}^{k}, with two local nodes $\mathbf{x}_{1}^{k}=\left\{x_{1}^{k}, y_{1}^{k}\right\}, \mathbf{x}_{2}^{k}=\left\{x_{2}^{k}, y_{2}^{k}\right\}$. Note that k is now an index over all the boundary segments, which are considered as 1-d elements. To evaluate this integral, we will map S_{h}^{k} to a reference element $\hat{S}=(-1,1)$; let η be the spatial variable in the reference domain. The elemental matrix can then be calculated from

$$
A_{\alpha \beta}^{k 2}=\int_{\hat{S}} \mathcal{H}_{\alpha} \mathcal{H}_{\beta}\left(\frac{h^{k}}{2} d \eta\right), \alpha, \beta=1,2
$$

$H_{\alpha}, \alpha=1,2$ are the Langrangian interpolants,

$$
H_{1}=\frac{1-\eta}{2}, H_{2}=\frac{1+\eta}{2}
$$

and the term $\frac{h^{k}}{2}$ is the Jacobian of the transformation (for more details look in the lecture notes.) Here, h^{k} is the length of segment S_{h}^{k} and can be calculated from

$$
h^{k}=\sqrt{\left(x_{1}^{k}-x_{2}^{k}\right)^{2}+\left(y_{1}^{k}-y_{2}^{k}\right)^{2}}
$$

Using the above, and calculating the integrals the elemental matrix becomes

$$
\underline{A}^{k 2}=\frac{h^{k}}{3}\left(\begin{array}{cc}
1 & \frac{1}{2} \tag{15}\\
\frac{1}{2} & 1
\end{array}\right) .
$$

- Term $\int_{\Gamma_{\text {root }}} v d S$.

This term appears both in the calculation of the load vector \underline{F}_{h}^{k}, and the output vector \underline{L}_{h}^{k}. This is an integral over the fin root, $\Gamma_{\text {root }}$, and the analysis is presented in the lecture notes. The elemental load vector can be calculated from

$$
F_{h \alpha}^{k}=L_{h \alpha}^{k}=\frac{h^{k}}{2} \int_{-1}^{1} \mathcal{H}_{\alpha} d \eta, \alpha=1,2 .
$$

By doing the integration,

$$
\begin{equation*}
F_{h}^{k}=L_{h}^{k}=\frac{h^{k}}{2}\binom{1}{1} \tag{16}
\end{equation*}
$$

To form $\underline{A}_{h}(\underline{\mu})$, we then use the following algorithm:

```
\mp@subsup{A}{h}{}}:=
for all domains \Omega}\mp@subsup{\Omega}{}{i},i=0,\ldots,4\mathrm{ do
    for all elements k\in \Omega}\mp@subsup{}{}{i}\mathrm{ do
        Calculate the elemental matrix }\mp@subsup{A}{}{k1
        for }\alpha=1,\ldots,3\mathrm{ do
            n}=\mp@subsup{0}{}{i}(k,\alpha
            for }\beta=1,\ldots,3\mathrm{ do
                    n}=\mp@subsup{\mp@code{0}}{}{i}(k,\beta
                    Ah\mp@subsup{n}{1}{}\mp@subsup{n}{2}{}}=\mp@subsup{A}{h\mp@subsup{n}{1}{}\mp@subsup{n}{2}{}}{}+\mp@subsup{k}{}{i}\mp@subsup{A}{\alpha\beta}{k1
            end for
            end for
        end for
end for
```

For the load vector \underline{F}_{h} and the output vector \underline{L}_{h} the following algorithm is used:

$$
\underline{F}_{h}:=0
$$

2: for all segments m on $\Gamma_{\text {root }}$ do Calculate the load vector \underline{F}_{h}^{m}
4: \quad for $\alpha=1, \ldots, 2$ do

$$
n_{1}=\kappa^{2}(m, \alpha)
$$

$$
\underline{F}_{h n_{1}}=\underline{F}_{h n_{1}}+\underline{F}_{h \alpha}^{m}
$$

end for

end for
$\underline{L}_{h}:=\underline{F}_{h}$
ס) The implementation of the above algorithm for the data structures provided with the problem statement is given in Appendix 1 (file FE.m). For the configuration $\underline{\mu}_{0}=\{0.4,0.6,0.8,1.2,0.1\}$, the solution $u_{h}\left(\mu_{0}\right)$ has been computed using the triangulation $\mathcal{T}_{h_{\text {medium }}}$. A plot of the temperature distribution is shown in Figure 2. The output was calculated

$$
T_{\text {root h }}\left(\underline{\mu_{0}}\right)=1.7342 .
$$

ϵ) We start by proving that

$$
\begin{equation*}
T_{\text {root }}(\underline{\mu})-T_{\text {root } h}(\underline{\mu})=a(e(\underline{\mu}), e(\underline{\mu})) . \tag{17}
\end{equation*}
$$

Since $\ell^{O}(v)=\ell(v), \forall v \in Y$,

$$
\begin{aligned}
T_{\text {root }}(\underline{\mu}) & =\ell^{O}(u(\underline{\mu}))=\ell(u(\underline{\mu})), \\
T_{\text {root } h}(\underline{\mu}) & =\ell^{O}\left(u_{h}(\underline{\mu})\right)=\ell(u(\underline{\mu})) .
\end{aligned}
$$

Subtracting the above equations and using the linearity of $\ell(v)$

$$
T_{\text {root }}(\underline{\mu})-T_{\text {root } h}(\underline{\mu})=\ell\left(u(\underline{\mu})-u_{h}(\underline{\mu})\right)=\ell(e(\underline{\mu})),
$$

where $e(\underline{\mu}) \equiv u(\underline{\mu})-u_{h}(\underline{\mu})$ is the error introduced by the finite element approximation to the exact solution. We will $\overline{\text { als }}$ so nee \bar{d} Galerkin orthogonality

$$
\left.\begin{array}{l}
a(u(\underline{\mu}), v ; \underline{\mu})=\ell(v), \forall v \in X \\
a\left(u_{h}(\underline{\mu}), v ; \underline{\mu}\right)=\ell(v), \forall v \in X_{h}
\end{array}\right\} \Rightarrow a\left(u(\underline{\mu})-u_{h}(\underline{\mu}), v ; \underline{\mu}\right)=0 \Rightarrow a(e(\underline{\mu}), v ; \underline{\mu})=0, \quad \forall v \in X_{h}
$$

Therefore for $v=u_{h}(\underline{\mu}) \in X_{h}$, and using symmetry of the bilinear form

$$
\begin{equation*}
a\left(e(\underline{\mu}), u_{h}(\underline{\mu})\right)=0 \Rightarrow a\left(u_{h}(\underline{\mu}), e(\underline{\mu})\right)=0 . \tag{18}
\end{equation*}
$$

From (6), choosing $v=e(\underline{\mu}) \in Y$

$$
a(u(\underline{\mu}), e(\underline{\mu}) ; \underline{\mu})=\ell(e(\underline{\mu})) \Rightarrow T_{\text {root }}(\underline{\mu})-T_{\text {root } h}(\underline{\mu})=a(u(\underline{\mu}), e(\underline{\mu}) ; \underline{\mu})
$$

From the two equations above using linearity

$$
\begin{equation*}
T_{\text {root }}(\underline{\mu})-T_{\text {root } h}(\underline{\mu})=a(u(\underline{\mu}), e(\underline{\mu}) ; \underline{\mu})-\underbrace{a\left(u_{h}(\underline{\mu}), e(\underline{\mu})\right)}_{0}=a(e(\underline{\mu}), e(\underline{\mu}) ; \underline{\mu}) \tag{19}
\end{equation*}
$$

We then notice that
$T_{\text {root }}(\underline{\mu})-T_{\text {root }} h(\underline{\mu})=a(e(\underline{\mu}), e(\underline{\mu}) ; \underline{\mu})=\|e(\underline{\mu})\|^{2} \leq C h^{2} ;$
since we assume that the solution $u \in H^{2}\left(\Omega ; \mathcal{T}_{h}\right)$. For the last part of (20), a priori theory for the energy norm were used (given in the notes). So we expect at least an h^{2} convergence from the method. In practice since the conductivities at each domain are discontinuous, the solution may not be in $H^{2}\left(\Omega ; \mathcal{T}_{h}\right)$. To estimate the convergence rate for our problem, we do the following test.

$$
\left.\begin{array}{r}
\left(T_{\text {root }}\right)_{h_{\text {fine }}}-\left(T_{\text {root }}\right)_{2 h_{\text {fine }}=h_{\text {medium }}}=C\left(2 h_{\text {fine }}\right)^{b} \\
\left(T_{\text {root }}\right)_{h_{\text {fine }}}-\left(T_{\text {root }}\right)_{4 h_{\text {fine }}=h_{\text {coarse }}}=C\left(4 h_{\text {fine }}\right)^{b}
\end{array}\right\} \Rightarrow \text { } \begin{array}{r}
b=\frac{1}{\log 2} \log \left(\frac{\left(T_{\text {root }}\right)_{h_{\text {fine }}}-\left(T_{\text {root }}\right)_{h_{\text {coarse }}}}{\left(T_{\text {root }}\right)_{h_{\text {fine }}}-\left(T_{\text {root }}\right)_{h_{\text {medium }}}}\right)
\end{array}
$$

Figure 2: Temperature distribution for $\underline{\mu_{0}}$

The evaluations are done for $\underline{\mu}_{0}=\{0.4,0.6,0.8,1.2,0.1\}$.

$$
\begin{aligned}
T_{\text {root }}^{h_{\text {fine }}} & =1.7350 \\
T_{\text {root }_{h_{\text {medium }}}} & =1.7342 \\
T_{\text {root }_{h_{\text {coarse }}}} & =1.7313
\end{aligned}
$$

The exponent b is then computed

$$
\begin{equation*}
b=2.19 \tag{21}
\end{equation*}
$$

As we can see for this example b is approximately 2 , so the presence of geometric singularities does not affect the convergence rate.

Part 2 - Reduced-Basis Approximation

For the development of the reduced-basis approximation we introduce a sample in parameter space,

$$
S_{N}=\left\{\underline{\mu}^{1}, \underline{\mu}^{2}, \ldots, \underline{\mu}^{N}\right\}
$$

with $N \ll n$. Each $\underline{\mu}^{i}, i=1, \ldots, N$, belongs in the parameter set \mathcal{D}. We then introduce the reduced-basis space as

$$
\begin{equation*}
W_{N}=\operatorname{span}\left\{u_{h}\left(\underline{\mu}^{1}\right), u_{h}\left(\underline{\mu}^{2}\right), \ldots, u_{h}\left(\underline{\mu}^{N}\right)\right\} \tag{22}
\end{equation*}
$$

where $u_{h}\left(\underline{\mu}^{i}\right)$ is the finite-element solution for $\underline{\mu}=\underline{\mu}^{i}$. To simplify the notation, we define $\zeta^{i} \in X$ as

$$
\zeta^{i}=u_{h}\left(\underline{\mu}^{i}\right), \quad i=1, \ldots, N
$$

we can then write $W_{N}=\operatorname{span}\left\{\zeta^{i}, i=1, \ldots, N\right\}$. Any member v_{N} of W_{N} can be represented as

$$
\begin{equation*}
v_{N}=\sum_{j=1}^{N} \beta^{j} \zeta^{j} \tag{23}
\end{equation*}
$$

for some unique choice of $\beta^{j} \in \mathbb{R}, j=1, \ldots, N$. (We implicitly assume that the $\zeta^{i}, i=1, \ldots, N$, are linearly independent; it follows that W_{N} is an N-dimensional subspace of X.)

In the reduced-basis approach we look for an approximation $u_{N}(\underline{\mu})$ to $u_{h}(\underline{\mu})$ (which for our purposes here we presume is arbitrarily close to $u(\underline{\mu}))$ in W_{N}; in particular, we express $u_{N} \overline{(\mu)}$ as

$$
\begin{equation*}
u_{N}(\underline{\mu})=\sum_{j=1}^{N} u_{N}^{j} \zeta^{j} ; \tag{24}
\end{equation*}
$$

we denote by $\underline{u}_{N}(\underline{\mu}) \in \mathbb{R}^{N}$ the coefficient vector $\left(u_{N}^{1}, \ldots, u_{N}^{N}\right)^{T}$. The energy principle is crucial here (though more generally the weak form would suffice). To wit, we apply the classical Rayleigh-Ritz procedure to define

$$
\begin{equation*}
u_{N}(\underline{\mu})=\arg \min _{w_{N} \in W_{N}} J\left(w_{N}\right) \tag{25}
\end{equation*}
$$

alternatively we can apply Galerkin projection to obtain the equivalent statement

$$
\begin{equation*}
a\left(u_{N}(\underline{\mu}), v ; \underline{\mu}\right)=\ell(v), \forall v \in W_{N} \tag{26}
\end{equation*}
$$

The output can then be calculated from

$$
\begin{equation*}
T_{\text {root } N}(\underline{\mu})=\ell^{O}\left(u_{N}(\underline{\mu})\right) \tag{27}
\end{equation*}
$$

α) We want to prove that in the energy norm

$$
\begin{equation*}
\left\|u(\underline{\mu})-u_{N}(\underline{\mu})\right\| \leq\left\|u(\underline{\mu})-w_{N}\right\|, \forall w_{N} \in W_{N} . \tag{28}
\end{equation*}
$$

Any w_{N} which is a member of W_{N}, can be written as $w_{N}=u_{N}(\underline{\mu})+v_{N}$, where $u_{N}(\underline{\mu}), v_{N} \in W_{N}$. We then have

$$
\begin{aligned}
\left\|u(\underline{\mu})-w_{N}\right\|^{2} & =a\left(u(\underline{\mu})-w_{N}, u(\underline{\mu})-w_{N}\right) \\
& =a\left(u(\underline{\mu})-u_{N}(\underline{\mu})-v_{N}, u(\underline{\mu})-u_{N}(\underline{\mu})-v_{N}\right) \\
& =a\left(u(\underline{\mu})-u_{N}(\underline{\mu}), u(\underline{\mu})-u_{N}(\underline{\mu})\right)-2 a\left(v_{N}, u(\underline{\mu})-u_{N}(\underline{\mu})\right)+a\left(v_{N}, v_{N}\right)
\end{aligned}
$$

where we have used, the definition of the energy norm, bi-linearity and symmetry of $a(\cdot, \cdot)$. By virtue of the Galerkin orthogonality in W_{N}

$$
a\left(v_{N}, u(\underline{\mu})-u_{N}(\underline{\mu})\right)=0 .
$$

Therefore,

$$
\begin{aligned}
\left\|u(\underline{\mu})-w_{N}\right\|^{2} & =a\left(u(\underline{\mu})-u_{N}(\underline{\mu}), u(\underline{\mu})-u_{N}(\underline{\mu})\right)+a\left(v_{N}, v_{N}\right) \\
& =\left\|u(\underline{\mu})-u_{N}(\underline{\mu})\right\|^{2}+\left\|v_{N}\right\|^{2}
\end{aligned}
$$

And the desired result (28) is readily proved, since $\left\|v_{N}\right\| \geq 0$. Note that we didn't make any assumption on w_{N} other than it belongs to the reduced-basis space W_{N}, this result is valid for all $w_{N} \in W_{N}$.
β) The proof of this result is identical to the proof given in Part 1 - Question ϵ. We only need replace $u_{h}(\underline{\mu}) \rightarrow u_{N}(\underline{\mu})$ and $X_{h} \rightarrow W_{N}$.

$$
\begin{equation*}
T_{\text {root }}(\underline{\mu})-T_{\text {root } N}(\underline{\mu})=\left\|u(\underline{\mu})-u_{N}(\underline{\mu})\right\|^{2} \tag{29}
\end{equation*}
$$

$\gamma)$ Since $u_{N}(\underline{\mu}) \in W_{N}$, from (24)

$$
u_{N}(\underline{\mu})=\sum_{\beta=1}^{N} u_{N}^{\beta} \zeta^{\beta} ;
$$

Therefore from (26)

$$
a\left(u_{N}(\underline{\mu}), v ; \underline{\mu}\right)=\ell(v), \forall v \in W_{N} \Rightarrow \sum_{\beta=1}^{N} u_{N}^{\beta} a\left(\zeta^{\beta}, v ; \underline{\mu}\right)=\ell(v), \forall v \in W_{N}
$$

Choosing $v=\zeta^{\alpha}, \alpha=1, \ldots, N$, each entry of $\underline{A}_{N}(\underline{\mu})$ can be obtained from

$$
\begin{equation*}
\underline{A}_{N}(\underline{\mu})_{\alpha \beta}=a\left(\zeta^{\beta}, \zeta^{\alpha}\right), \forall \alpha, \beta \in\{1, \ldots, N\} . \tag{30}
\end{equation*}
$$

Since, ζ^{α} is the finite element solution for a particular configuration $\underline{\mu}_{\alpha}$, we can write ζ^{α} in term of the nodal basis functions $\varphi_{i}, i=1, \ldots, n(n \equiv$ dimension of the finite element space),

$$
\zeta^{\alpha}=\sum_{i=1}^{n} \zeta_{i}^{\alpha} \varphi_{i}
$$

Then each element of $\underline{A}_{N}(\underline{\mu})$ is calculated as follows:

$$
\begin{aligned}
\underline{A}_{N}(\underline{\mu})_{\alpha \beta} & =a\left(\zeta^{\beta}, \zeta^{\alpha}\right) \\
& =a\left(\sum_{i=1}^{n} \zeta_{i}^{\alpha} \varphi_{i}, \sum_{j=1}^{n} \zeta_{j}^{\beta} \varphi_{j}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \zeta_{i}^{\alpha} \zeta_{j}^{\beta} a\left(\varphi_{i}, \varphi_{j}\right) \\
& =\left(\underline{\zeta}^{\alpha}\right)^{T} \underline{A}_{h}(\underline{\mu})\left(\underline{\zeta}^{\beta}\right), \forall \alpha, \beta \in\{1, \ldots, N\}
\end{aligned}
$$

The above can be written succinctly in terms of \underline{Z} an $n \times N$ matrix, the $j^{t h}$ column of which is $\underline{u}_{h}\left(\mu^{j}\right)$ (the nodal values of $u_{h}\left(\underline{\mu}^{j}\right)$),

$$
\begin{equation*}
\underline{A}_{N}(\underline{\mu})=\underline{Z}^{T} \underline{A}_{h}(\underline{\mu}) \underline{Z} \tag{31}
\end{equation*}
$$

A similar procedure can be used, for the load vector \underline{F}_{N}. The steps are outlined below $(\alpha=\{1, \ldots, N\})$.

$$
\begin{aligned}
F_{N \alpha} & =\ell\left(\zeta^{\alpha}\right) \\
& =\ell\left(\sum_{i=1}^{n} \zeta_{i}^{\alpha} \varphi_{i}\right) \\
& =\sum_{i=1}^{n} \zeta_{i}^{\alpha} \ell\left(\varphi_{i}\right) \\
& =\left(\underline{\zeta}^{\alpha}\right)^{T} \underline{F}_{h}, \alpha=\{1, \ldots, N\} .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\underline{F}_{N}=\underline{Z}^{T} \underline{F}_{h} . \tag{32}
\end{equation*}
$$

Finally since $\ell^{O}(v) \equiv \ell(v)$,

$$
\underline{F}_{N}=\underline{L}_{N}
$$

$\delta)$ The bilinear form is

$$
\begin{equation*}
a(w, v ; \underline{\mu})=\sum_{i=0}^{4} k^{i} \int_{\Omega^{i}} \nabla w \cdot \nabla v d A+\mathrm{Bi} \int_{\Gamma \backslash \Gamma_{\mathrm{root}}} w v d S . \tag{33}
\end{equation*}
$$

Choosing now

$$
\begin{array}{ll}
\sigma^{1}(\underline{\mu})=k^{1} & a^{1}(w, v)=\int_{\Omega^{1}} \nabla w \cdot \nabla v d A \\
\sigma^{2}(\bar{\mu})=k^{2} & a^{2}(w, v)=\int_{\Omega^{2}} \nabla w \cdot \nabla v d A \\
\sigma^{3}(\bar{\mu})=k^{3} & a^{3}(w, v)=\int_{\Omega^{3}} \nabla w \cdot \nabla v d A \\
\sigma^{4}(\underline{\mu})=k^{4} & a^{4}(w, v)=\int_{\Omega^{4}} \nabla w \cdot \nabla v d A \tag{34}\\
\sigma^{5}(\bar{\mu})=k^{0} & a^{5}(w, v)=\int_{\Omega^{0}} \nabla w \cdot \nabla v d A \\
\sigma^{6}(\underline{\mu})=\mathrm{Bi} & a^{6}(w, v)=\int_{\Gamma \backslash \Gamma_{\text {root }}} w v d S
\end{array}
$$

we can verify that the bilinear form $a(w, v ; \underline{\mu})$ can be decomposed as

$$
\begin{equation*}
a(w, v ; \underline{\mu})=\sum_{q=1}^{Q} \sigma^{q}(\underline{\mu}) a^{q}(w, v), \forall w, v \in X, \forall \underline{\mu} \in \mathcal{D} \tag{35}
\end{equation*}
$$

for $Q=6$.
We now prove that for the discrete form of the problem, both for the finite element matrix $\underline{A}_{h}(\underline{\mu})$ and the reduced-basis matrix $\underline{A}_{N}(\underline{\mu})$, a similar decomposition exists. Since

$$
\begin{aligned}
A_{h \alpha \beta}(\underline{\mu}) & =a\left(\varphi_{\beta}, \varphi_{\alpha}\right) \\
& =\sum_{q=1}^{Q} \sigma^{q}(\underline{\mu}) a^{q}\left(\varphi_{\beta}, \varphi_{\alpha}\right) \\
& =\sum_{q=1}^{Q} \sigma^{q}(\underline{\mu}) A_{h \alpha \beta}^{q}, \alpha, \beta \in\{1, \ldots, n\}
\end{aligned}
$$

and in matrix notation it becomes

$$
\begin{equation*}
\underline{A}_{h}(\underline{\mu})=\sum_{q=1}^{Q} \sigma^{q}(\underline{\mu}) \underline{A}_{h}^{q} . \tag{36}
\end{equation*}
$$

For the reduced-basis matrix,

$$
\begin{aligned}
A_{N \alpha \beta}(\underline{\mu}) & =a\left(\zeta^{\beta}, \zeta^{\alpha}\right) \\
& =\sum_{q=1}^{Q} \sigma^{q}(\underline{\mu}) a^{q}\left(\zeta^{\beta}, \zeta^{\alpha}\right) \\
& =\sum_{q=1}^{Q} \sigma^{q}(\underline{\mu}) A_{N \alpha \beta}^{q}, \alpha, \beta \in\{1, \ldots, N\}
\end{aligned}
$$

and in matrix notation it becomes

$$
\begin{equation*}
\underline{A}_{N}(\underline{\mu})=\sum_{q=1}^{Q} \sigma^{q}(\underline{\mu}) \underline{A}_{N}^{q} \tag{37}
\end{equation*}
$$

$\epsilon)$ The algorithm for the off-line/on-line version of the reduced-basis approximation is indicated below.

- Off-line

1. Choose N.
2. Choose the sample S_{N}.
3. Construct \underline{Z}.
4. Construct $\underline{A}_{N}^{q}, q=1, \ldots, Q ; \underline{F}_{N}$; and \underline{L}_{N}.

- On-line

1. Form $\underline{A}_{N}(\underline{\mu})$ from (37)
2. Solve $A_{N}(\underline{\mu}) \underline{u}_{N}(\underline{\mu})=\underline{F}_{N}$.
3. Evaluate the output $T_{\text {root }} N(\underline{\mu})$ from (4).

The implementation of this algorithm (files offline.m and online.m) can be found in Appendix 1. For $N=10$, and the sample set S_{N} given in the datafile sn. dat we compute for

$$
\begin{array}{lll}
\underline{\mu}_{0}=\{0.4,0.6,0.8,1.2,0.1\} & \rightarrow & T_{\text {root } N}\left(\underline{\mu}_{0}\right)=1.72621, \text { and for } \\
\underline{\mu}_{1}=\{1.8,4.2,5.7,1.9,0.3\} & \rightarrow & T_{\text {root } N}\left(\underline{\mu}_{1}\right)=1.07496 .
\end{array}
$$

ち) We next do an operation count for the online part of the algorithm. For simplicity, we assume that addition and multiplication incur the same computational cost.

- Form $\underline{A}_{N}(\mu)$ from (37).

This requires $(Q-1) N^{2}=5 N^{2}$ additions, and $Q N^{2}=6 N^{2}$ multiplications, a total of $11 N^{2}$ operations.

- Solve $A_{N}(\underline{\mu}) \underline{u}_{N}(\underline{\mu})=\underline{F}_{N}$.

Since the resulting system is a dense matrix, a direct solver (Gauss elimination) is usually used. The computational cost is $\frac{2}{3} N^{3}+\frac{N^{2}}{2}+N-1$ (See lecture notes on solution methods).

- Evaluate the output $T_{\text {root } N}(\underline{\mu})$ from (4).

This is the cost for the calculation of the inner product, there are N multiplications and $N-1$ additions, a total of $2 N-1$ operations.

So the total cost for the on-line stage for each new $\underline{\mu}$ of interest is

$$
\begin{equation*}
\frac{2}{3} N^{3}+\frac{34}{3} N^{2}+2 N-2 \tag{38}
\end{equation*}
$$

operations. As we can see the operation count is independent of n.
$\eta)$ Finally, we consider the design problem, in which a thermal fin with specified $\left\{k_{1}, k_{2}, k_{3}, k_{4}\right\}=\{0.4,0.6,0.8,1.2\}$ is given, and we need to choose the cooling method (Biot number) that minimizes a cost function

$$
\begin{equation*}
C(\mathrm{Bi})=0.1 \mathrm{Bi}+T_{\text {root }}(\mathrm{Bi}) . \tag{39}
\end{equation*}
$$

To solve this optimization problem a simple line

Figure 3: Cost as a function of Biot number search is done for Biot numbers in the interval from $[0.1,10]$. The cost function, as a function of the Biot number is presented in Figure 3. The optimal $B i=2.18$ and the cost function is minimized with a value $C(2.18)=0.7584$.

Appendix 1 - MATLAB ${ }^{\circledR}$ codes

FE.m

```
function [u,s,A,f]=FE(grid,params,solve)
    % Returns the stiffness matrix, right hand side.
    % Grid is the grid data structure to use for the matrix
    % params Is the parameter vector....
    % params=[k1, k2, k3, k4, k0, Bi]';
    % solve: Lo
    if size(params,1)~}=
        error(' Check input paramater vector');
    end
    % Direct stiffness summation for the inner part of the domain...
    ind=find(abs(params(1:5))>eps);
    A1=zeros(3,3);
    A=spalloc(grid.nodes,grid.nodes,10*grid.nodes);
    f=zeros(grid.nodes,1);
    for i= ind'
        for \mathbf{j}=(grid.theta{i})'
        x1=grid.coor(j(1),1);y1=grid.coor(j(1),2);
        x2=grid.coor(j(2),1);y2=grid.coor(j(2),2);
        x3=grid.coor(j(3),1);y3=grid.coor(j(3),2);
        area= -x2*y1 + x3*y1 + x1*y2 - x3*y2 - x1*y3 + x2*y3;
        c11 = y2 - y ; ;
        c12 = y3 - y1;
        c13 = y1 - y2;
        c21 = x3 - x2;
        c22 = x1 - x }3\mathrm{ ;
        c23 = x2 - x1;
        A1=params(i)/(2*abs(area))*...
            [c11*c11+c}2\mp@subsup{1}{}{*}\textrm{c}21 \textrm{c}1\mp@subsup{1}{}{*}\textrm{c}12+\textrm{c}2\mp@subsup{1}{}{*}\textrm{c}22 c 11* c 13+c c21*c23 ;..
            c}12*\textrm{c}11+\textrm{c}2\mp@subsup{2}{}{*}\textrm{c}21 \textrm{c}12*\textrm{c}12+\textrm{c}2\mp@subsup{2}{}{*}\textrm{c}22 c 12* c13+c22** 23 ;..
            c13*c11+c23**21 c13*c12+c23*c22 c13*c13+c23**23];
        A(\mathbf{j},\mathbf{j})=A(\mathbf{j},\mathbf{j})+A1;
        end
    end
    % Robin boundary conditions matrix...
    if abs(params(6)>0)
    mass=zeros(2,2);
        for }\mathbf{j}=(\mathrm{ grid.theta{6}),
        x1=grid.coor(j(1),1);y1=grid.coor(j(1),2);
        x2=grid.coor(j(2),1);y2=grid.coor(j(2),2);
        dx=sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1));
        mass=params(6)*[dx/3 dx/6; dx/6 dx/3];
        A(\mathbf{j},\mathbf{j})=A(\mathbf{j},\mathbf{j})+\mathrm{ mass;}
        end
    end
    %Right hand side vector...
    f=zeros(grid.nodes,1);
    for j=(grid.theta{7})'
        x1=grid.coor(j(1),1);y1=grid.coor(j(1),2);
        x2=grid.coor(j(2),1);y2=grid.coor(j(2),2);
        dx=sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1));
        f(j)=f(j)+[dx/2 dx/2]';
    end
60 u=0.0;
s=0.0;
```

```
if solve \({ }^{\sim}=0\)
    \% Solve
    \(\mathrm{u}=\mathrm{A} \backslash \mathrm{f}\);
    \% ... and calculate output
    \(\mathrm{s}=\operatorname{dot}(\mathrm{u}, \mathrm{f})\);
end
```

offline.m

```
    function [bb]=offline(grid,N,ranges)
    % Creates the reduced-basis information,
    % and saves it to a datafile..
    % This is basically the off-line part of the code...
    % Grid: Is the grid data file to be used.
    % N: Is the number of basis functions to keep.
    % Ranges: Is a Px2 array with the ranges for the parameters
    % Datafile: The name of the file that the data related to the
    % reduced basis are going to be saved (Good for having different cases).
    % Create the distribution of points
    rbpoints=lograndom_point_distribution(ranges,N);
    %rbpoints=random_point_distribution(ranges,N);
    % Form the reduced basis
    disp('Starting calculation of reduced basis:');
    Z=zeros(grid.nodes,N);
    for i=1:N
    [Z(:,i) s]=FE(grid, rbpoints(i,:)', 1);
    disp([i rbpoints(i,:)]);
    disp(sprintf('Output functional: %f\n', s));
end
% Preprocessing step to form Aq and the right hand side...
Q=6;
bb.ANq=zeros(Q,N,N);
bb.FN=zeros(N);
30 bb.N=N;
bb.Q=Q;
for q=1:Q
    ind=zeros(Q,1);ind(q)=1.0;
    [u s A f]=FE(grid, ind, 0);
    bb.ANq(q,.,:)=Z'*A*Z;
end
bb.FN=Z'*f;
4 0 ~ f u n c t i o n ~ [ p o i n t s ] = l o g r a n d o m \ p o i n t \_ d i s t r i b u t i o n ( r a n g e s , N ) ~
% Creates the log-distribution of points...
epsilon=0.1;
ran=log(ranges+epsilon);
rand('seed',6510040);
phys=size(ranges,1);
points=zeros(N,phys);
for i=1:phys
    points(:,i)=ran(i,1)+(ran(i,2)-ran(i,1))*rand(N,1);
end
points=\boldsymbol{exp(points)-epsilon;}
```

10
function [points]=random_point_distribution(ranges,N)

```
% Creates a random range...
rand('seed',6510040);
phys=size(ranges,1);
points=zeros(N,phys);
for i=1:phys
    points(:,\mathbf{i})=ranges(i,1)+(ranges(i,2)}-\operatorname{ranges}(\mathbf{i},1))*\operatorname{rand}(\textrm{N},1)
end
```

online.m
function $[\mathrm{sN}]=$ online(datapoint, bb)
\% Datapoint: is the desired point for which we want to evaluate.
\% bb: Is the blackbox data structure.
$\mathrm{A}=\boldsymbol{z e r o s}(\mathrm{bb} . \mathrm{N}, \mathrm{bb} . \mathrm{N})$;
for $q=1$: $b b . Q$
$A=A+$ fin(datapoint,$q)^{*}$ squeeze(bb.ANq(q,:,:)); end
10
$u N=A \backslash b b . F N ;$
$\mathrm{sN}=\operatorname{dot}(u N, b b . F N) ;$
function $[\mathrm{Fq}]=$ fin(datapoint, q)
\% Returns the coefficient Fq, for the given q.
$\mathrm{Fq}=$ datapoint (q);

