
SMA 5212 - Numerical methods for Partial Differential Equations.

Massachusetts Institute of Technology Singapore - MIT Alliance

3nd Problem Set - Variational Methods

Solution

Design of a thermal fin

Problem Statement

The problem of designing a thermal fin to effectively remove heat from a surface has been considered. The
two-dimensional fin, shown in Figure 1 is characterized by a five–component parameter vector, or “input,”
µ = (µ1, µ2, . . . , µ5), where µi = ki, i = 1, . . . , 4, and µ5 = Bi; µ may take on any value in a specified design
set D ⊂ IR5.

Here ki is the thermal conductivity of the ith

Figure 1: Thermal Fin

subfin (normalized relative to the post conductivity
k0 ≡ 1); and Bi is the Biot number, a nondimen-
sional heat transfer coefficient reflecting convective
transport to the air at the fin surfaces. The post
is of width unity and height four; the subfins are of
fixed thickness t = 0.25 and length L = 2.5.

The steady–state temperature distribution with-
in the fin, u(µ), is governed by the elliptic partial
differential equation

−ki ∇2ui = 0 in Ωi, i = 0, . . . , 4; (1)

ui refers to the restriction of u to Ωi. We must also ensure continuity of temperature and heat flux at the
conductivity–discontinuity interfaces Γi

int ≡ ∂Ω0 ∩ ∂Ωi, i = 1, . . . , 4, where ∂Ωi denotes the boundary of Ωi:

u0 = ui

−(∇u0 · n̂i) = −ki(∇ui · n̂i)

}
on Γi

int, i = 1, . . . , 4; (2)

here n̂i is the outward normal on ∂Ωi. Finally, we introduce a Neumann flux boundary condition on the fin
root

−(∇u0 · n̂0) = −1 on Γroot, (3)

which models the heat source; and a Robin boundary condition

−ki(∇ui · n̂i) = Bi ui on Γi
ext, i = 0, . . . , 4, (4)

which models the convective heat losses. Here Γi
ext is that part of the boundary of Ωi exposed to the flowing

fluid; note that ∪4
i=0Γ

i
ext = Γ\Γroot.

The output considered was Troot(µ), the average steady-state temperature of the fin root normalized by
the prescribed heat flux into the fin root.

Troot(µ) ≡ `O(v) =
∫

Γroot

v. (5)

Part 1 - Finite Element Approximation

α) In the statement of the problem the strong form of the equations was described. To obtain the temper-
ature distribution u(µ) inside the thermal fin, we need to solve (1), with the boundary conditions given in
(2),(3),(4). We want to verify that the solution of this problem will satisfy the weak formulation which is
the starting point for the finite element method. In this question we assume that u(µ) is sufficiently smooth,
so that integration by parts and relatedly Gauss and Green’s theorems can be applied.

The weak form of the problem is to find u(µ) ∈ X ≡ H1(Ω) which satisfies

a(u(µ), v;µ) = `(v), ∀v ∈ X, (6)

where

a(w, v;µ) =
4∑

i=0

ki

∫
Ωi

∇w · ∇v dA + Bi
∫

Γ\Γroot

wv dS,

`(v) =
∫

Γroot

v dS.

We want to show that

4∑
i=0

ki

∫
Ωi

∇ui(µ) · ∇v dA︸ ︷︷ ︸
I1

= −Bi
∫

Γ\Γroot

ui(µ) v dS +
∫

Γroot

v dS, ∀v ∈ X. (7)

We start from I1 and apply Gauss theorem

I1 =
4∑

i=0

ki

∫
Ωi

∇ui(µ) · ∇v dA

=
4∑

i=0

ki

(∫
Ωi

∇ · (v∇ui(µ)) dA−
∫

Ωi

v ∇2ui(µ) dA

)
.

The second term in the equation above vanishes, because from (1), −ki ∇2ui = 0 in Ωi, i = 0, . . . , 4. For
the first term we apply Green’s theorem and

I1 =
4∑

i=0

ki

∫
∂Ωi

v(∇ui(µ) · n̂i) dS.

Since for each domain Ωi, i = 1, . . . , 4 the boundary can be decomposed as ∂Ωi = Γi
int ∪ Γi

ext, i = 1, . . . , 4,
and for domain Ω0, ∂Ω0 = Γ0

int ∪ Γ0
ext ∪ Γroot

I1 =
4∑

i=0

ki

∫
Γi

ext

v(∇ui(µ) · n̂i) dS +
4∑

i=0

ki

∫
Γi

int

v(∇ui(µ) · n̂i) dS︸ ︷︷ ︸
I2

+
∫

Γroot

v(∇u0(µ) · n̂i) dS;

for the last integral k0 = 1 was used. We next show that the term I2 is equal to zero.

I2 =
4∑

i=1

ki

∫
Γi

int

v(∇ui(µ) · n̂i) dS +
∫

Γ0
int

v(∇u0(µ) · n̂0) dS︸ ︷︷ ︸
I3

=
4∑

i=1

∫
Γi

int

v
[
ki(∇ui(µ) · n̂i)− (∇u0(µ) · n̂i)

]
dS = 0

and vanishes from the continuity of heat flux boundary condition (2). Note that for I3 we have used the
following expression

I3 =
∫

Γ0
int

v(∇u0(µ) · n̂0) dS =
4∑

i=1

∫
Γi

int

v(∇u0(µ) · n̂0) dS = −
4∑

i=1

∫
Γi

int

v(∇u0(µ) · n̂i) dS;

since Γ0
int = ∪4

i=1Γ
i
int, and n̂0 = −n̂i on Γi

int, i = 1, . . . , 4. Therefore,

I1 =
4∑

i=0

ki

∫
Γi

ext

v(∇ui(µ) · n̂i) dS +
∫

Γroot

v(∇u0(µ) · n̂i) dS.

Now we apply the Neumann and Robin boundary conditions (3) and (4), to obtain

I1 = −
4∑

i=0

Bi
∫

Γi
ext

ui(µ) v dS +
∫

Γroot

v dS

since ∪4
i=0Γ

i
ext = Γ\Γroot, I1 becomes

I1 = −Bi
∫

Γ\Γroot

u(µ) v dS +
∫

Γroot

v dS

which is exactly expression (7), that we wanted to prove.

β) We want to show that
u(µ) = arg min

w∈X
J(w),

with

J(w) =
1
2

4∑
i=0

ki

∫
Ωi

∇w · ∇w dA +
Bi
2

∫
Γ\Γroot

w2 dS −
∫

Γroot

w dS (8)

Let w = u(µ)+ v, since X ≡ H1(Ω) (more precisely, X = H1(Ω)∩C0(Ω)) is a linear space, then if v and
u(µ) ∈ X, w will also be a member of X. Starting from (7),

J(u(µ) + v) =
1
2

4∑
i=0

ki

∫
Ωi

∇(u(µ) + v) · ∇(u(µ) + v) dA +
Bi
2

∫
Γ\Γroot

(u(µ) + v)2 dS −
∫

Γroot

(u(µ) + v) dS

=
1
2

4∑
i=0

ki

∫
Ωi

∇u(µ) · ∇u(µ) dA +
Bi
2

∫
Γ\Γroot

(u(µ))2 dS −
∫

Γroot

u(µ) dS

+
4∑

i=0

ki

∫
Ωi

∇u(µ) · ∇v dA + Bi
∫

Γ\Γroot

u(µ) v dS −
∫

Γroot

v dS

+
4∑

i=0

ki

∫
Ωi

∇v · ∇v dA + Bi
∫

Γ\Γroot

v dS

= J(u(µ)) + δJv(u(µ)) + a(v, v;µ).

The first variation

δJv(u(µ)) =
4∑

i=0

ki

∫
Ωi

∇u(µ) · ∇v dA + Bi
∫

Γ\Γroot

u(µ) v dS −
∫

Γroot

v dS ≡ 0, ∀v ∈ X

as was shown in question α. Therefore

J(u(µ) + v) = J(u(µ)) + a(v, v;µ), ∀v ∈ X. (9)

The last part of the proof is to prove that a(v, v;µ) is a symmetric positive definite bilinear form.

• Symmetry

a(w, v;µ) =
4∑

i=0

ki

∫
Ωi

∇w · ∇v dA + Bi
∫

Γ\Γroot

wv dS

=
4∑

i=0

ki

∫
Ωi

∇v · ∇w dA + Bi
∫

Γ\Γroot

vw dS

= a(v, w;µ),∀w, v ∈ X.

• Positive Definiteness. We will prove that a(w,w;µ) > 0, ∀w ∈ X, w 6= 0. To start we consider only
a1(w, v;µ) =

∑4
i=0 ki

∫
Ωi ∇w · ∇v dA, the first part of a(w, v;µ). This is the pure Neumann problem,

and as was discussed in the lecture notes has a non-trivial nullspace; any constant function c, makes
a1(c, v;µ) = 0. For all other functions w ∈ X, a1(w, v;µ) > 0, therefore ∀w ∈ X, w 6= c, a(w, v;µ) will
be positive, since the second term in a(u, v;µ) is non-negative. Finally if w = c,

a(c, c;µ) =
4∑

i=0

ki

∫
Ωi

∇c · ∇c dA︸ ︷︷ ︸
=0

+Bi
∫

Γ\Γroot

cc dS

= Bi c2s;

with s the perimeter of the Robin boundary. Since s and Bi are positive,

a(c, c;µ) = Bi c2s ≥ 0 → c2 ≥ 0

so a(c, c;µ) = 0 ↔ c = 0. Therefore, we have proved that only c = 0 will make a(c, c;µ) = 0.
Summarizing a(w,w;µ) > 0, ∀w ∈ X, w 6= 0, and we have proved positive definiteness. A corollary of
this proof, is that a(w, v;µ) induces a norm, which is the energy norm |||v||| ≡ a(v, v;µ)1/2.

So from (9), we can conclude that

J(u(µ) + v) ≥ J(u(µ)), ∀v ∈ X, v 6= 0; (10)

the minimization principle has been verified.

γ) To obtain the discrete approximation to the continuous problem, we will use the linear finite element
space

Xh = {v ∈ H1(Ω)| v|Th
∈ IP1(Th), ∀Th ∈ Th}.

By applying standard Galerkin projection to Xh, the discrete problem becomes, find uh(µ) ∈ Xh such that

a(uh(µ), v;µ) = `(v), ∀v ∈ Xh; (11)

the output of interest can be calculated similarly

Troot h(µ) = `O(uh(µ)). (12)

To derive the elemental matrices we follow the same procedure presented in the lecture notes.

• Term
∫

T k
h

∇u · ∇v dA.

We will derive the expression for linear elements. We consider an element T k
h with three local nodes

xk
1 = {xk

1 , yk
1}, xk

2 = {xk
2 , yk

2}, xk
3 = {xk

3 , yk
3}. Also let Hk

1 , Hk
2 , Hk

3 . be the restriction of the nodal
functions that have support over the element T k

h . These functions, from the definition of the finite
element space are linear and satisfy Hk

α(xk
β) = δα β , α, β = 1, . . . , 3. Since Hk

α are linear the following

expression can be used Hk
α = cα + cx αx + cy αy, α = 1, . . . , 3. To obtain those coefficients we need to

solve the following systems

 1 xk
1 yk

1

1 xk
2 yk

2

1 xk
3 yk

3

 cα

cx α

cy α

 =

α=1︷ ︸︸ ︷ 1
0
0

 or

α=2︷ ︸︸ ︷ 0
1
0

 or

α=3︷ ︸︸ ︷ 0
0
1

 (13)

The elemental matrix can readily be calculated since,

Ak 1
α β =

∫
T k

h

∂Hk
α

∂x

∂Hk
β

∂x
+

∂Hk
α

∂y

∂Hk
β

∂y
dA = (Area)k(cx α cx β + cy α cy β), α, β = 1, . . . , 3.

Since the derivatives of the nodal functions are constant over each element T k
h . An explicit form in

terms of the coordinates follows

Bk
1 =

 (yk
2 − yk

3)(yk
2 − yk

3) (yk
2 − yk

3)(yk
3 − yk

1) (yk
2 − yk

3)(yk
1 − yk

2)
(yk

3 − yk
1)(yk

2 − yk
3) (yk

3 − yk
1)(yk

3 − yk
1) (yk

3 − yk
1)(yk

1 − yk
2)

(yk
1 − yk

2)(yk
2 − yk

3) (yk
1 − yk

2)(yk
3 − yk

1) (yk
1 − yk

2)(yk
1 − yk

2)

Bk

2 =

 (xk
2 − xk

3)(xk
2 − xk

3) (xk
2 − xk

3)(xk
3 − xk

1) (xk
2 − xk

3)(xk
1 − xk

2)
(xk

3 − xk
1)(xk

2 − xk
3) (xk

3 − xk
1)(xk

3 − xk
1) (xk

3 − xk
1)(xk

1 − xk
2)

(xk
1 − xk

2)(xk
2 − xk

3) (xk
1 − xk

2)(xk
3 − xk

1) (xk
1 − xk

2)(xk
1 − xk

2)

Ak 1 =

1
2| − xk

2 ∗ yk
1 + xk

3 ∗ yk
1 + xk

1 ∗ yk
2 − xk

3 ∗ yk
2 − xk

1 ∗ yk
3 + xk

2 ∗ yk
3 |

(
Bk

1 + Bk
2

)
(14)

Note that for the area of the element T k
h the formula

(Area)k =
1
2
|

∣∣∣∣∣∣
1 xk

1 yk
1

1 xk
2 yk

2

1 xk
3 yk

3

∣∣∣∣∣∣ |
was used.

• Term
∫

Γ\Γroot

u v dS.

This is an integral over the Robin boundary Γ\Γroot, and can be identified as the 1-d mass matrix.
To evaluate the elemental matrix, we only need to look at a boundary segment Sk

h, with two local
nodes xk

1 = {xk
1 , yk

1}, xk
2 = {xk

2 , yk
2}. Note that k is now an index over all the boundary segments,

which are considered as 1-d elements. To evaluate this integral, we will map Sk
h to a reference element

Ŝ = (−1, 1); let η be the spatial variable in the reference domain. The elemental matrix can then be
calculated from

Ak 2
α β =

∫
Ŝ

Hα Hβ

(
hk

2
dη

)
, α, β = 1, 2.

Hα, α = 1, 2 are the Langrangian interpolants,

H1 =
1− η

2
, H2 =

1 + η

2
,

and the term hk

2 is the Jacobian of the transformation (for more details look in the lecture notes.)
Here, hk is the length of segment Sk

h and can be calculated from

hk =
√

(xk
1 − xk

2)2 + (yk
1 − yk

2)2.

Using the above, and calculating the integrals the elemental matrix becomes

Ak 2 =
hk

3

(
1 1

2
1
2 1

)
. (15)

• Term
∫
Γroot

v dS.
This term appears both in the calculation of the load vector F k

h, and the output vector Lk
h. This is an

integral over the fin root, Γroot, and the analysis is presented in the lecture notes. The elemental load
vector can be calculated from

F k
h α = Lk

h α =
hk

2

∫ 1

−1

Hα dη, α = 1, 2.

By doing the integration,

F k
h = Lk

h =
hk

2

(
1
1

)
(16)

To form Ah(µ), we then use the following algorithm:

Ah := 0
2: for all domains Ωi, i = 0, . . . , 4 do

for all elements k ∈ Ωi do
4: Calculate the elemental matrix Ak 1

for α = 1, . . . , 3 do
6: n1 = θi(k, α)

for β = 1, . . . , 3 do
8: n2 = θi(k, β)

Ah n1 n2 = Ah n1 n2 + ki Ak 1
α β

10: end for
end for

12: end for
end for

14: for all segments m on Γ\Γroot do
Calculate the elemental matrix Am 2

16: for α = 1, . . . , 2 do
n1 = κ1(m,α)

18: for β = 1, . . . , 2 do
n2 = κ1(m,β)

20: Ah n1 n2 = Ah n1 n2 + Bi Am 2
α β

end for
22: end for

end for

For the load vector Fh and the output vector Lh the following algorithm is used:
Fh := 0

2: for all segments m on Γroot do
Calculate the load vector Fm

h

4: for α = 1, . . . , 2 do
n1 = κ2(m,α)

6: Fh n1
= Fh n1

+ Fm
h α

end for
8: end for

Lh := Fh

δ) The implementation of the above algorithm for the data structures provided with the problem state-
ment is given in Appendix 1 (file FE.m). For the configuration µ

0
= {0.4, 0.6, 0.8, 1.2, 0.1}, the solution

uh(µ0) has been computed using the triangulation Thmedium . A plot of the temperature distribution is shown
in Figure 2. The output was calculated

Troot h(µ0) = 1.7342.

ε) We start by proving that

Troot(µ)− Troot h(µ) = a(e(µ), e(µ)). (17)

Since `O(v) = `(v), ∀v ∈ Y,

Troot(µ) = `O(u(µ)) = `(u(µ)),

Troot h(µ) = `O(uh(µ)) = `(u(µ)).

Subtracting the above equations and using the linearity of `(v)

Troot(µ)− Troot h(µ) = `(u(µ)− uh(µ)) = `(e(µ)),

where e(µ) ≡ u(µ)−uh(µ) is the error introduced by the finite element approximation to the exact solution.
We will also need Galerkin orthogonality

a(u(µ), v;µ) = `(v), ∀v ∈ X
a(uh(µ), v;µ) = `(v), ∀v ∈ Xh

}
⇒ a(u(µ)− uh(µ), v;µ) = 0 ⇒ a(e(µ), v;µ) = 0, ∀v ∈ Xh.

Therefore for v = uh(µ) ∈ Xh, and using symmetry of the bilinear form

a(e(µ), uh(µ)) = 0 ⇒ a(uh(µ), e(µ)) = 0. (18)

From (6), choosing v = e(µ) ∈ Y

a(u(µ), e(µ);µ) = `(e(µ)) ⇒ Troot(µ)− Troot h(µ) = a(u(µ), e(µ);µ)

From the two equations above using linearity

Troot(µ)− Troot h(µ) = a(u(µ), e(µ);µ)− a(uh(µ), e(µ))︸ ︷︷ ︸
0

= a(e(µ), e(µ);µ) (19)

We then notice that

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 2: Temperature distribution for µ0

Troot(µ)−Troot h(µ) = a(e(µ), e(µ);µ) = |||e(µ)|||2 ≤ Ch2;
(20)

since we assume that the solution u ∈ H2(Ω; Th).
For the last part of (20), a priori theory for the
energy norm were used (given in the notes). So we
expect at least an h2 convergence from the method.
In practice since the conductivities at each domain
are discontinuous, the solution may not be in H2(Ω; Th).
To estimate the convergence rate for our problem,
we do the following test.

(Troot)hfine − (Troot)2hfine=hmedium = C(2hfine)b

(Troot)hfine − (Troot)4hfine=hcoarse = C(4hfine)b

}
⇒

b =
1

log 2
log

(
(Troot)hfine − (Troot)hcoarse

(Troot)hfine − (Troot)hmedium

)
The evaluations are done for µ

0
= {0.4, 0.6, 0.8, 1.2, 0.1}.

Troothfine
= 1.7350

Troothmedium
= 1.7342

Troothcoarse
= 1.7313

The exponent b is then computed
b = 2.19. (21)

As we can see for this example b is approximately 2, so the presence of geometric singularities does not affect
the convergence rate.

Part 2 - Reduced-Basis Approximation

For the development of the reduced-basis approximation we introduce a sample in parameter space,

SN = {µ1, µ2, . . . , µN}

with N � n. Each µi, i = 1, . . . , N , belongs in the parameter set D. We then introduce the reduced-basis
space as

WN = span{uh(µ1), uh(µ2), . . . , uh(µN)} (22)

where uh(µi) is the finite-element solution for µ = µi. To simplify the notation, we define ζi ∈ X as

ζi = uh(µi), i = 1, . . . , N ;

we can then write WN = span{ζi, i = 1, . . . , N}. Any member vN of WN can be represented as

vN =
N∑

j=1

βjζj , (23)

for some unique choice of βj ∈ IR, j = 1, . . . , N . (We implicitly assume that the ζi, i = 1, . . . , N , are linearly
independent; it follows that WN is an N -dimensional subspace of X.)

In the reduced-basis approach we look for an approximation uN (µ) to uh(µ) (which for our purposes here
we presume is arbitrarily close to u(µ)) in WN ; in particular, we express uN (µ) as

uN (µ) =
N∑

j=1

uj
N ζj ; (24)

we denote by uN (µ) ∈ IRN the coefficient vector (u1
N , . . . , uN

N)T . The energy principle is crucial here (though
more generally the weak form would suffice). To wit, we apply the classical Rayleigh-Ritz procedure to define

uN (µ) = arg min
wN∈WN

J(wN); (25)

alternatively we can apply Galerkin projection to obtain the equivalent statement

a(uN (µ), v;µ) = `(v), ∀v ∈ WN . (26)

The output can then be calculated from

Troot N (µ) = `O(uN (µ)). (27)

α) We want to prove that in the energy norm

|||u(µ)− uN (µ)||| ≤ |||u(µ)− wN |||, ∀wN ∈ WN . (28)

Any wN which is a member of WN , can be written as wN = uN (µ) + vN , where uN (µ), vN ∈ WN . We then
have

|||u(µ)− wN |||2 = a(u(µ)− wN , u(µ)− wN)
= a(u(µ)− uN (µ)− vN , u(µ)− uN (µ)− vN)
= a(u(µ)− uN (µ), u(µ)− uN (µ))− 2a(vN , u(µ)− uN (µ)) + a(vN , vN);

where we have used, the definition of the energy norm, bi-linearity and symmetry of a(·, ·). By virtue of the
Galerkin orthogonality in WN

a(vN , u(µ)− uN (µ)) = 0.

Therefore,

|||u(µ)− wN |||2 = a(u(µ)− uN (µ), u(µ)− uN (µ)) + a(vN , vN)

= |||u(µ)− uN (µ)|||2 + |||vN |||2

And the desired result (28) is readily proved, since |||vN ||| ≥ 0. Note that we didn’t make any assumption on
wN other than it belongs to the reduced-basis space WN , this result is valid for all wN ∈ WN .

β) The proof of this result is identical to the proof given in Part 1 - Question ε. We only need replace
uh(µ) → uN (µ) and Xh → WN .

Troot(µ)− Troot N (µ) = |||u(µ)− uN (µ)|||2. (29)

γ) Since uN (µ) ∈ WN , from (24)

uN (µ) =
N∑

β=1

uβ
N ζβ ;

Therefore from (26)

a(uN (µ), v;µ) = `(v), ∀v ∈ WN ⇒
N∑

β=1

uβ
Na(ζβ , v;µ) = `(v),∀v ∈ WN .

Choosing v = ζα, α = 1, . . . , N , each entry of AN (µ) can be obtained from

AN (µ)α β = a(ζβ , ζα), ∀α, β ∈ {1, . . . , N}. (30)

Since, ζα is the finite element solution for a particular configuration µ
α
, we can write ζα in term of the nodal

basis functions ϕi, i = 1, . . . , n (n ≡ dimension of the finite element space),

ζα =
n∑

i=1

ζα
i ϕi.

Then each element of AN (µ) is calculated as follows:

AN (µ)α β = a(ζβ , ζα)

= a(
n∑

i=1

ζα
i ϕi,

n∑
j=1

ζβ
j ϕj)

=
n∑

i=1

n∑
j=1

ζα
i ζβ

j a(ϕi, ϕj)

= (ζα)T Ah(µ)(ζβ), ∀α, β ∈ {1, . . . , N}

The above can be written succinctly in terms of Z an n×N matrix, the jth column of which is uh(µj) (the
nodal values of uh(µj)),

AN (µ) = ZT Ah(µ)Z. (31)

A similar procedure can be used, for the load vector FN . The steps are outlined below (α = {1, . . . , N}).

FN α = `(ζα)

= `(
n∑

i=1

ζα
i ϕi)

=
n∑

i=1

ζα
i `(ϕi)

= (ζα)T Fh, α = {1, . . . , N}.

Therefore
FN = ZT Fh. (32)

Finally since `O(v) ≡ `(v),
FN = LN

δ) The bilinear form is

a(w, v;µ) =
4∑

i=0

ki

∫
Ωi

∇w · ∇v dA + Bi
∫

Γ\Γroot

wv dS. (33)

Choosing now
σ1(µ) = k1 a1(w, v) =

∫
Ω1 ∇w · ∇v dA

σ2(µ) = k2 a2(w, v) =
∫
Ω2 ∇w · ∇v dA

σ3(µ) = k3 a3(w, v) =
∫
Ω3 ∇w · ∇v dA

σ4(µ) = k4 a4(w, v) =
∫
Ω4 ∇w · ∇v dA

σ5(µ) = k0 a5(w, v) =
∫
Ω0 ∇w · ∇v dA

σ6(µ) = Bi a6(w, v) =
∫
Γ\Γroot

wv dS

(34)

we can verify that the bilinear form a(w, v;µ) can be decomposed as

a(w, v;µ) =
Q∑

q=1

σq(µ)aq(w, v), ∀w, v ∈ X, ∀µ ∈ D, (35)

for Q = 6.
We now prove that for the discrete form of the problem, both for the finite element matrix Ah(µ) and

the reduced-basis matrix AN (µ), a similar decomposition exists. Since

Ah α β(µ) = a(ϕβ , ϕα)

=
Q∑

q=1

σq(µ)aq(ϕβ , ϕα)

=
Q∑

q=1

σq(µ)Aq
h α β , α, β ∈ {1, . . . , n}

and in matrix notation it becomes

Ah(µ) =
Q∑

q=1

σq(µ)Aq
h. (36)

For the reduced-basis matrix,

AN α β(µ) = a(ζβ , ζα)

=
Q∑

q=1

σq(µ)aq(ζβ , ζα)

=
Q∑

q=1

σq(µ)Aq
N α β , α, β ∈ {1, . . . , N}

and in matrix notation it becomes

AN (µ) =
Q∑

q=1

σq(µ)Aq
N . (37)

ε) The algorithm for the off-line/on-line version of the reduced-basis approximation is indicated below.

• Off-line

1. Choose N .

2. Choose the sample SN .

3. Construct Z.

4. Construct Aq
N , q = 1, . . . , Q; FN ; and LN .

• On-line

1. Form AN (µ) from (37)

2. Solve AN (µ)uN (µ) = FN .

3. Evaluate the output Troot N (µ) from (4).

The implementation of this algorithm (files offline.m and online.m) can be found in Appendix 1. For
N = 10, and the sample set SN given in the datafile sn.dat we compute for

µ
0

= {0.4, 0.6, 0.8, 1.2, 0.1} → Troot N (µ
0
) = 1.72621, and for

µ
1

= {1.8, 4.2, 5.7, 1.9, 0.3} → Troot N (µ
1
) = 1.07496.

ζ) We next do an operation count for the online part of the algorithm. For simplicity, we assume that
addition and multiplication incur the same computational cost.

• Form AN (µ) from (37).
This requires (Q−1)N2 = 5N2 additions, and QN2 = 6N2 multiplications, a total of 11N2 operations.

• Solve AN (µ)uN (µ) = FN .
Since the resulting system is a dense matrix, a direct solver (Gauss elimination) is usually used. The
computational cost is 2

3N3 + N2

2 + N − 1 (See lecture notes on solution methods).

• Evaluate the output Troot N (µ) from (4).
This is the cost for the calculation of the inner product, there are N multiplications and N−1 additions,
a total of 2N − 1 operations.

So the total cost for the on-line stage for each

0 1 2 3 4 5 6 7 8 9 10
0.5

1

1.5

2

Bi

C
(B

i)

Figure 3: Cost as a function of Biot number

new µ of interest is

2
3
N3 +

34
3

N2 + 2N − 2 (38)

operations. As we can see the operation count is
independent of n.

η) Finally, we consider the design problem, in which
a thermal fin with specified {k1, k2, k3, k4} ={0.4, 0.6, 0.8, 1.2}
is given, and we need to choose the cooling method
(Biot number) that minimizes a cost function

C(Bi) = 0.1 Bi + Troot(Bi). (39)

To solve this optimization problem a simple line
search is done for Biot numbers in the interval from [0.1, 10]. The cost function, as a function of the
Biot number is presented in Figure 3. The optimal Bi = 2.18 and the cost function is minimized with a
value C(2.18) = 0.7584.

Appendix 1 - MATLAB® codes

FE.m

function [u,s,A,f]=FE(grid,params,solve)
% Returns the stiffness matrix, right hand side.
% Grid is the grid data structure to use for the matrix
% params Is the parameter vector. . . .
% params= [k1, k2, k3, k4, k0, Bi]’;
% solve: Lo

if size(params,1)˜= 6
error(’ Check input paramater vector’);

10 end

% Direct stiffness summation for the inner part of the domain. . .
ind=find(abs(params(1:5))>eps);
A1=zeros(3,3);
A=spalloc(grid.nodes,grid.nodes,10*grid.nodes);
f=zeros(grid.nodes,1);

for i = ind’
for j = (grid.theta{i})’

20 x1=grid.coor(j(1),1);y1=grid.coor(j(1),2);
x2=grid.coor(j(2),1);y2=grid.coor(j(2),2);
x3=grid.coor(j(3),1);y3=grid.coor(j(3),2);
area= −x2*y1 + x3*y1 + x1*y2 − x3*y2 − x1*y3 + x2*y3;
c11 = y2 − y3;
c12 = y3 − y1;
c13 = y1 − y2;
c21 = x3 − x2;
c22 = x1 − x3;
c23 = x2 − x1;

30 A1=params(i)/(2*abs(area))*. . .
[c11*c11+c21*c21 c11*c12+c21*c22 c11*c13+c21*c23 ;. . .
c12*c11+c22*c21 c12*c12+c22*c22 c12*c13+c22*c23 ;. . .
c13*c11+c23*c21 c13*c12+c23*c22 c13*c13+c23*c23];

A(j,j)=A(j,j)+A1;
end

end

% Robin boundary conditions matrix. . .
if abs(params(6)>0)

40 mass=zeros(2,2);
for j=(grid.theta{6})’

x1=grid.coor(j(1),1);y1=grid.coor(j(1),2);
x2=grid.coor(j(2),1);y2=grid.coor(j(2),2);
dx=sqrt((x2−x1)*(x2−x1)+(y2−y1)*(y2−y1));
mass=params(6)*[dx/3 dx/6; dx/6 dx/3];
A(j,j)=A(j,j)+mass;

end
end

50

%Right hand side vector. . .
f=zeros(grid.nodes,1);
for j=(grid.theta{7})’

x1=grid.coor(j(1),1);y1=grid.coor(j(1),2);
x2=grid.coor(j(2),1);y2=grid.coor(j(2),2);
dx=sqrt((x2−x1)*(x2−x1)+(y2−y1)*(y2−y1));
f(j)=f(j)+[dx/2 dx/2]’;

end

60 u=0.0;
s=0.0;

if solve˜= 0
% Solve
u=A\f;
% . . . and calculate output.
s=dot(u,f);

end

offline.m

function [bb]=offline(grid,N,ranges)
% Creates the reduced-basis information,
% and saves it to a datafile. . .
% This is basically the off-line part of the code. . .
% Grid: Is the grid data file to be used.
% N: Is the number of basis functions to keep.
% Ranges: Is a Px2 array with the ranges for the parameters
% Datafile: The name of the file that the data related to the
% reduced basis are going to be saved (Good for having different cases).

10

% Create the distribution of points
rbpoints=lograndom point distribution(ranges,N);

%rbpoints=random point distribution(ranges,N);

% Form the reduced basis
disp(’Starting calculation of reduced basis:’);
Z=zeros(grid.nodes,N);

20 for i=1:N
[Z(:,i) s]=FE(grid, rbpoints(i,:)’, 1);

disp([i rbpoints(i,:)]);
disp(sprintf(’Output functional: %f\n’, s));

end

% Preprocessing step to form Aq and the right hand side. . .
Q=6;
bb.ANq=zeros(Q,N,N);
bb.FN=zeros(N);

30 bb.N=N;
bb.Q=Q;

for q=1:Q
ind=zeros(Q,1);ind(q)=1.0;
[u s A f]=FE(grid, ind, 0);
bb.ANq(q,:,:)=Z’*A*Z;

end
bb.FN=Z’*f;

40 function [points]=lograndom point distribution(ranges,N)
% Creates the log-distribution of points. . .
epsilon=0.1;
ran=log(ranges+epsilon);
rand(’seed’,6510040);
phys=size(ranges,1);
points=zeros(N,phys);

for i=1:phys
points(:,i)=ran(i,1)+(ran(i,2)−ran(i,1))*rand(N,1);

50 end

points=exp(points)−epsilon;

function [points]=random point distribution(ranges,N)

% Creates a random range. . . .
rand(’seed’,6510040);
phys=size(ranges,1);
points=zeros(N,phys);

60 for i=1:phys
points(:,i)=ranges(i,1)+(ranges(i,2)−ranges(i,1))*rand(N,1);

end

online.m

function [sN]=online(datapoint,bb)
% Datapoint: is the desired point for which we want to evaluate.
% bb: Is the blackbox data structure.

A=zeros(bb.N,bb.N);

for q=1:bb.Q
A=A+fin(datapoint,q)*squeeze(bb.ANq(q,:,:));

end
10

uN=A\bb.FN;

sN=dot(uN,bb.FN);

function [Fq]=fin(datapoint,q)
% Returns the coefficient Fq, for the given q.
Fq=datapoint(q);

sagarw
MATLAB

sagarw
®

sagarw
is a trademark of The MathWorks, Inc.

