
Week 2 Class Notes 
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Plan for Today 

• Accident Models  

• Introduction to Systems Thinking 

• STAMP: A new loss causality model 
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Accident Causality Models 

• Underlie all our efforts to engineer for safety 

• Explain why accidents occur 

• Determine the way we prevent and investigate accidents 

• May not be aware you are using one, but you are 

• Imposes patterns on accidents 

    “All models are wrong, some models are useful” 

                                                  George Box 
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Traditional Ways to Cope with Complexity 

1. Analytic Reduction 

2. Statistics 
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Analytic Reduction 

• Divide system into distinct parts for analysis 
        Physical aspects  Separate physical components or functions  
              Behavior          Events over time 

• Examine parts separately and later combine analysis 
results 

• Assumes such separation does not distort phenomenon 
– Each component or subsystem operates independently 
– Analysis results not distorted when consider components 

separately 
– Components act the same when examined singly as when 

playing their part in the whole 
– Events not subject to feedback loops and non-linear interactions 
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Standard Approach to Safety

• Reductionist
– Divide system into components

– Assume accidents are caused by component failure

– Identify chains of directly related physical or logical component 
failures that can lead to a loss 

– Assume randomness in the failure events so can derive 
probabilities for a loss 

• Forms the basis for most safety engineering and reliability 
engineering analysis and design

Redundancy and barriers (to prevent failure propagation), 
  high component integrity and overdesign, fail-safe design, ….
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Domino “Chain of events” Model 

Event-based 

Cargo 
door fails 

Causes Floor 
collapses 

Causes Hydraulics 
fail 

Causes Airplane 
crashes 

DC-10: 

Image by MIT OpenCourseWare.
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The Domino Model in action 

Image removed due to copyright restrictions.
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Chain-of-events example 

From Leveson, Nancy (2012). Engineering a Safer World: Systems Thinking Applied to
Safety. MIT Press, © Massachusetts Institute of Technology. Used with permission.
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Event Chain 
•  E1: Worker washes pipes without inserting a slip blind. 

•  E2: Water leaks into MIC tank 

•  E3: Gauges do not work 

•  E4: Operator does not open valve to relief tank 

•  E3: Explosion occurs 

•  E4: Relief valve opens 

•  E5: Flare tower, vent scrubber, water curtain do not work 

•  E5: MIC vented into air 

•  E6: Wind carries MIC into populated area around plant. 

What was the “root cause”?  
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Variants of Domino Model 

• Bird and Loftus (1976)  
– Lack of control by management, permitting 

– Basic causes (personal and job factors) that lead to 

– Immediate causes (substandard practices/conditions/errors), which are 
the proximate cause of 

– An accident or incident, which results in 

– A loss.  

• Adams (1976)  
– Management structure (objectives, organization, and operations)  

– Operational errors (management or supervisor behavior)  

– Tactical errors (caused by employee behavior and work conditions) 

– Accident or incident 

– Injury or damage to persons or property.  
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Reason Swiss Cheese 

© Cambridge University Press. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
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© Cambridge University Press. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
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Swiss Cheese Model Limitations 

• Ignores common cause failures of defenses (systemic 
accident factors) 

• Does not include migration to states of high risk 

• Assumes accidents are random events coming together 
accidentally 

• Assumes some (linear) causality or precedence in the 
cheese slices (and holes)  

• Just a chain of events, no explanation of “why” events 
occurred
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Accident with No Component Failures 

• Mars Polar Lander 
– Have to slow down spacecraft to land safely 

– Use Martian gravity, parachute, descent engines 
(controlled by software) 

– Software knows landed because of sensitive sensors on 
landing legs. Cut off engines when determine have landed. 

– But “noise” (false signals) by sensors generated when 
parachute opens 

– Software not supposed to be operating at that time but 
software engineers decided to start early to even out load 
on processor 

– Software thought spacecraft had landed and shut down 
descent engines 
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Types of Accidents 

• Component Failure Accidents 
– Single or multiple component failures 
– Usually assume random failure 

• Component Interaction Accidents 
– Arise in interactions among components 
– Related to interactive and dynamic complexity 
– Behavior can no longer be  

• Planned 
• Understood 
• Anticipated 
• Guarded against 

– Exacerbated by introduction of computers and software 
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Accident with No Component Failure 

• Navy aircraft were ferrying missiles from one location to 
another. 

• One pilot executed a planned test by aiming at aircraft in 
front and firing a dummy missile.  

• Nobody involved knew that the software was designed to 
substitute a different missile if the one that was 
commanded to be fired was not in a good position.  

• In this case, there was an antenna between the dummy 
missile and the target so the software decided to fire a 
live missile located in a different (better) position instead. 
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Analytic Reduction does not Handle 

• Component interaction accidents 

• Systemic factors (affecting all components and barriers) 

• Software and software requirements errors 

• Human behavior (in a non-superficial way) 

• System design errors 

• Indirect or non-linear interactions and complexity 

• Migration of systems toward greater risk over time (e.g., 
in search for greater efficiency and productivity) 
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Summary 

• New levels of complexity, software, human factors do not 
fit into a reductionist, reliability-oriented world. 

• Trying to shoehorn new technology and new levels of 
complexity into old methods will not work 

 

Images removed due to copyright restrictions.
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• “But the world is too complex to look at the 
whole, we need analytic reduction” 

• Right? 

20



Systems Theory 

• Developed for systems that are 
– Too complex for complete analysis 

• Separation into (interacting) subsystems distorts the results 

• The most important properties are emergent 

– Too organized for statistics 
• Too much underlying structure that distorts the statistics 

• New technology and designs have no historical information 

• Developed for biology and engineering  

• First used on ICBM systems of 1950s/1960s  
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Systems Theory (2) 

• Focuses on systems taken as a whole, not on parts 
taken separately 

• Emergent properties 
– Some properties can only be treated adequately in their 

entirety, taking into account all social and technical aspects 
     “The whole is greater than the sum of the parts” 

– These properties arise from relationships among the parts of 
the system  

       How they interact and fit together 
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Emergent properties 
(arise from complex interactions) 

Process 

Process components interact in  
direct and indirect ways 

Safety is an emergent property 
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Controller 
Controlling emergent properties 
(e.g., enforcing safety constraints) 

Process 

Control Actions Feedback 

Individual component behavior 
Component interactions 

Process components interact in  
direct and indirect ways 
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Controller 
Controlling emergent properties 
(e.g., enforcing safety constraints) 

Process 

Control Actions Feedback 

Individual component behavior 
Component interactions 

Process components interact in  
direct and indirect ways 

Air Traffic Control: 
      Safety 
      Throughput 
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Controls/Controllers Enforce Safety Constraints 

• Power must never be on when access door open 

• Two aircraft must not violate minimum separation 

• Aircraft must maintain sufficient lift to remain airborne 

• Public health system must prevent exposure of public to 
contaminated water and food products 

• Pressure in a deep water well must be controlled 

• Truck drivers must not drive when sleep deprived 
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Example 
Safety 
Control 
Structure 

From Leveson, Nancy (2012). Engineering a Safer World: Systems Thinking Applied to
Safety. MIT Press, © Massachusetts Institute of Technology. Used with permission.
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Courtesy of Qi D. Van Eikema Hommes. Used with permission.
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© Japan Aerospace Exploration Agency. All rights reserved. This content is excluded from our

Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

29

https://ocw.mit.edu/help/faq-fair-use/


Control Structure Diagram – Level 0 

© Japan Aerospace Exploration Agency. All rights reserved. This content is excluded from our

Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
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Control Structure Diagram – ISS Level 1 

© Japan Aerospace Exploration Agency. All rights reserved. This content is excluded from our

Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
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Controlled Process   
 

Process 
Model 

Control 
Actions Feedback 

The Role of Process Models in Control 

• Accidents often occur when process 
model inconsistent with state of 
controlled process (SA) 

• A better model for role of software and 
humans in accidents than random 
failure model 

• Four types of unsafe control actions: 

• Control commands required for safety 
are not given 

• Unsafe ones are given 

• Potentially safe commands given too 
early, too late 

• Control stops too soon or applied too 
long 

Controller 
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(Leveson, 2003); (Leveson, 2011) 

Control 
Algorithm 
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STAMP: 
System-Theoretic Accident 

Model and Processes 

Based on Systems Theory  
(vs. Reliability Theory) 
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Applying Systems Theory to Safety 

• Accidents involve a complex, dynamic “process” 
– Not simply chains of failure events 
– Arise in interactions among humans, machines and the 

environment 

• Treat safety as a dynamic control problem 
– Safety requires enforcing a set of constraints on system 

behavior  

– Accidents occur when interactions among system 
components violate those constraints 

– Safety becomes a control problem rather than just a 
reliability problem 
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Safety as a Dynamic Control Problem  

• Examples 
– O-ring did not control propellant gas release by sealing gap in field 

joint of Challenger Space Shuttle 

– Software did not adequately control descent speed of Mars Polar 
Lander 

– At Texas City, did not control the level of liquids in the ISOM tower;  

– In DWH, did not control the pressure in the well;  

– Financial system did not adequately control the use of financial 
instruments 
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Safety as a Dynamic Control Problem (2)

• Events are the result of the inadequate control
– Result from lack of enforcement of safety constraints 

in system design and operations

• A change in emphasis:

“prevent failures”

   ↓
“enforce safety constraints on system behavior”
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Accident Causality 
Using STAMP 

From Leveson, Nancy (2012). Engineering a Safer World: Systems Thinking Applied to
Safety. MIT Press, © Massachusetts Institute of Technology. Used with permission.
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