Handout 8: Lead compensation

Eric Feron

March 3, 2004

Lead Compensation goals: Raise phase (and gain) at high frequencies while not touching low-frequency system's characteristics: Can extend bandwidth of system.

Canonical lead element:

$$
K_{l e a d}(s)=\frac{s / a+1}{s / b+1}, 0 \leq a<b
$$

Typical lead Bode Plot:

$$
K_{p}=110
$$

Using Lead-Lag / PID compensation
Plant under study:

$$
G(s)=\frac{1 / 10}{(s+1)(s / 10+1)^{2}}
$$

' Requirements: Want to have good tracking $(p(j \omega))$, insensitivity to high frequency unmodelled dynamics ($l(j \omega)$, decent PM.

Compensation Scheme: We first adjust the gain K in the feedback loop to 110 .

Phase Margin is

Gain Margin is

BW is

Lead compensation:

$$
K_{l e a d}(s)=\frac{s / c+1}{s / d+1}
$$

Lag compensation:

$$
K_{l a g}(s)=\frac{s+a}{s+b}
$$

Final design: Bode plot

Final design: Root locus

Root Locus

$k=0.2$

