Handout 8: Lead compensation

Eric Feron

March 3, 2004

Lead Compensation goals: Raise phase (and gain) at high frequencies while not touching low-frequency system's characteristics: Can extend *bandwidth* of system.

Canonical lead element:

$$K_{lead}(s) = \frac{s/a+1}{s/b+1}, \ \ 0 \le a < b.$$

Typical lead Bode Plot:

Kp=10

 \sim

Using Lead-Lag / PID compensation **Plant under study:**

$$G(s) = \frac{1/10}{(s+1)(s/10+1)^2}$$

' Requirements: Want to have good tracking $(p(j\omega))$, insensitivity to high frequency unmodelled dynamics $(l(j\omega))$, decent PM.

Compensation Scheme: We first adjust the gain K in the feedback loop to 110.

Phase Margin is

Gain Margin is

BW is

Lead compensation:

$$K_{lead}(s) = \frac{s/c + 1}{s/d + 1}$$

Lag compensation:

$$K_{lag}(s) = \frac{s+a}{s+b}$$

Final design: Bode plot

Final design: Root locus

· - - -

$$d = |^2$$

$$c = 4.$$

_

-

-

k = 0.2