Handout 6: Proportional Compensation
Eric Feron
Feb 25, 2004

Plant under study:

$$
G(s)=\frac{1 / 10}{(s+1)(s / 10+1)^{2}}
$$

Compensation Scheme: We adjust the gain K in the feedback loop (draw the feedback loop below)

Root locus for Proportional compensator System becomes unstable when gain is

$$
\begin{aligned}
& \frac{1 / 10}{(5+1)(5 / 10+1)^{2}} \\
& \text { 竍 } \\
& (5 / 10+1)\left(5 / 10+1+\frac{5}{5}+\frac{1}{5}\right)=0 \\
& 35 / 10+6 / 5=0 \\
& 2 \frac{5}{10}+\frac{2}{5}=0 \\
& 5=\frac{10}{5}=-4
\end{aligned}
$$

Bode and Nyquist plots for Proportional compensator Phase margin becomes zero when gain is

Closed loop transfer functions
As seen from reference input to output:

As seen from unmodelled dynamics output to uncertain dynamics input

