Final examination
16.30 Control Systems S.H.O.

Eric Feron
100 points total
1.[8pt] Increased track densities for computer disk drives require careful design of the head positioning control. The transfer function of the system is
$G(s)=\frac{K}{(s+1)^{2}}$
Plot the Nyquist plot for this system when $K=4$. Compute the phase and magnitude at $0.5,1,2,4$ radians $/ \mathrm{sec}$.
2. [10pt] A feedback control system has a loop transfer function
$G(s) H(s)=\frac{50}{s^{2}+11 s+10}$.
a/ Determine the corner frequencies (beak points) for the Bode Plot.
b/ What is the slope of the Bode plot at very low and very high frequencies?
c/ Sketch the Bode plot of the system (magnitude and phase).
3. [10pt] The experimental Oblique Wing Aircraft has a wing that pivots about an axis parallel to the yaw axis (horizontal pivoting). The wing is in normal, unskewed position for low speeds and can move to a skewed position for improved supersonic flight. The loop gain for the longitudinal control system is $G(s)=\frac{4(0.5 s+1)}{s(2 s+1)\left[\left(\frac{s}{8}\right)^{2}+\left(\frac{s}{20}\right)+1\right]}$
a/ Determine the Bode diagram.
$\mathrm{b} /$ Find the frequency when the magnitude is 0 dB , and the frequency when the phase is -180 deg. What are the gain and phase margins?
4. [10pt] The Space Shuttle uses elevons at the trailing edge of the wing and a brake on the tail to control its flight. The block diagram of a pitch rate control system for the shuttle is given below

The sensor is represented by a gain $H(s)=0.5$, and the vehicle is represented by the transfer function

$$
G(s)=\frac{0.30(s+0.05)\left(s^{2}+1600\right)}{\left(s^{2}+0.05 s+16\right)(s+70)}
$$

The controller can be a gain or any suitable transfer function.
a/ Draw the Bode diagram of the system when the controller is $K(s)=2$ and determine the stability margin.
b/ Draw the Bode diagram of the system when
$K(s)=K_{1}+K_{2} / s$ and $K_{2} / K_{1}=0.5$.
The gain K_{1} should be selected so that the gain margin is 10 dB .
5/ [14pt] The roll axis of a high performance jet airplane is given by the transfer function

$$
G(s)=\frac{2}{(s+10)\left(s^{2}+2 s+2\right)}
$$

This is the transfer function from aileron to roll angle. Design a closed-loop controller such that the step response is well-behaved and the steady-state error to that step response is zero.

6/ [24pt] Dry (or Coulomb) friction applied to a mass m sliding on a surface may be modeled as a nonlinear element with a feedback loop as given below.

In this diagram, the dry friction maximum amplitude is D. For all numerical calculations, assume $D=1$ and $m=1$.
a/ Check and show that the above diagram indeed matches the intuitive notion of dry friction:

- When the mass is at rest (velocity zero), the friction force counteracts any force of amplitude less than D and keeps the mass still.
- When the mass is moving, the friction is of amplitude D and opposite to the motion of the system.
- Can the system inside the dashed box undergo uncontrolled oscillations?
b/ Give a qualitative description of the steady-state velocity response of the system to a sinusoidal input force of amplitude $2 D$.
c/ Compute the describing function of the dynamic nonlinear element contained in the dashed box. Is it dependent on amplitude? Is it dependent on frequency?
7.[24pt]

A mass m is mounted on a disk in such a way that it can slide (with no friction) only along a groove (dashed line) rigidly attached to the disk. This mass is connected to the center of the disc by a softening spring. The characteristic of the spring is given in the figure below; it is symmetric with respect to the origin:

The disc can be rotated at any fixed, desired angular rate Ω. We assume the mass m is one.
a/ Assume Ω is zero. Plot the phase-plane characteristic of the system (velocity $\mathrm{d} x / \mathrm{d} t$ vs. position x).
$\mathrm{b} /$ Assume now $\Omega=0.1 \mathrm{rad} / \mathrm{sec}$. In addition to the restoring force of the spring, the mass is now also subject to a centrifugal force of amplitude $m x \Omega^{2}$. Plot the phase-plane for the same system.
c/ Give a qualitative description of the evolution of the phase-plane for this system as the parameter Ω increases. Take a good look at the different equilibrium points. How do they move around?

