Homework 6

Eric Feron

April 4, 2004

1. A 564,000 lbs Boeing 747 is approaching land at seal level (flaps and landing gear down). Assuming a velocity of 221 ft/sec (Mach 0.198), the lateral-directional perturbation equations are

$$\begin{bmatrix} \dot{v} \\ \dot{r} \\ \dot{p} \\ \dot{\phi} \end{bmatrix} = \begin{bmatrix} -0.0890 & -2.19 & 0 & 0.319 \\ 0.0760 & -0.217 & -0.166 & 0 \\ -0.602 & 0.327 & -0.975 & 0 \\ 0 & 0.15 & 1 & 0 \end{bmatrix} \begin{bmatrix} v \\ r \\ p \\ \phi \end{bmatrix} + \begin{bmatrix} 0.0327 \\ -0.151 \\ 0.0636 \\ 0 \end{bmatrix} \delta r$$
$$y = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}.$$

- (a) Compute the corresponding transfer function linking r, the yaw rate (expressed in rad/sec), and δr , the rudder angle (expressed in rad).
- (b) Draw the uncompensated root-locus of this system.
- (c) Draw the Frequency response of this system.
- (d) Design a compensator for this system. What maximum bandwidth are you comfortable with?
- (e) The rudder is limited to $\pi/6$ rad maximum deflection. Assume the B747 is subject to a wind gust throwing it at an initial yaw rate of 0.2 rad/sec. What closed loop settling time (to get yaw rate back to zero) are you comfortable designing for?
- 2. Satellite Attitude control systems very often use reaction wheels to provide angular motion. The equations of motion for the system are

Satellite:
$$I\dot{\phi} = T_c + T_{ex}$$

Wheel: $J\dot{r} = -T_c$
Measurement: $\dot{Z} = \dot{\phi} - aZ$
Control: $T_c = -D(s)(Z - Z_d)$.

with

T_{\cdot}	=	Control torque
- c		Control torque
T_{ex}	=	Disturbance torque
ϕ	=	Attitude angle to be controlled
Z	=	Measurement from sensor
Z_d	=	Reference angle
Ι	=	Satellite inertia (1500 kg/m^2)
a	=	Sensor constant $(0.5 \text{ rad/sec}),$
D(s)	=	Compensation

- (a) Assume $D(s) = K_0$ a constant gain. Draw the root-locus with respect to K_0 for the resulting closed-loop system.
- (b) For what range of K_0 is the closed-loop system stable?
- (c) Add a lead controller with a pole at -1 so the closed-loop system has a bandwidth $\omega_{\rm BW} = 0.04$ rad/sec and a damping ratio of $\zeta = 0.5$ and the compensation is given by

$$D(s) = K_1 \frac{s+z}{s+1}.$$

Where should the zero of the lead compensator be located? Draw the root-locus and Bode plot of the compensated system. What value of K_1 allows the specifications to be met?

- (d) For what range of K_1 is the system stable?
- (e) What is the steady-state error (difference between Z and Z_d) to a constant disturbance torque T_{ex} for your design?
- (f) What are the phase and gain margins for your design?