Third Homework

Eric Feron

Feb 18, 2004

1. Prove that the root-locus resulting from the combination of two poles and one zero to the left of both of them on the real axis is a circle centered at the zero with radius given by $\sqrt{\left.\left|\left(p_{1}-z\right)\right| \mid p_{2}-z\right) \mid}$.
2. Consider the root-locus for the equation

$$
1+\frac{K}{s(s+10)(s+50)}=0 .
$$

(a) Show the real-axis segments clearly.
(b) Sketch the asymptotes for $K \rightarrow \infty$.
(c) For what values of K are the roots on the imaginary axis?
3. Sketch the complete root-locus (positive and negative gains) for the following systems by hand. Perform all steps indicated in the handout and detail your computations.
(a)

$$
K G(s)=\frac{K(s+4)}{s(s-4)\left(s^{2}+2 s+1\right)}
$$

(b)

$$
K G(s)=\frac{K(s+2)}{s(s+1)\left(s^{2}+2 s+20\right)}
$$

(c)

$$
K G(s)=\frac{2 K}{s\left(s^{2}+5 s+10\right)}
$$

(d)

$$
K G(s)=\frac{2 K\left(s^{2}+s+1\right)}{s\left(s^{2}+2 s+9\right)\left(s^{2}+s+2\right)}
$$

(e)

$$
K G(s)=\frac{K(s+0.1)(s+0.5)}{s\left(s^{2}+2 s+1\right)(s+3)(s+12)}
$$

(f)

$$
K G(s)=\frac{K(s+1)(s-0.4)}{s(s+3)(s+4)\left(s^{2}+6\right)}
$$

