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1 Preamble 

Linear mathematical models for equilibrium phenomena yield linear systems of equations. In some 
cases the model is “lumped” and thus discrete by construction, in other cases the model is continu
ous but then discrete by approximation. In either case we can ask the same questions: how can we 
form a system matrix which expresses the mathematical model in the language of linear algebra? 
how can we characterize the system matrix in terms of structure and mathematical properties? how 
can we determine if the linear systems of equations has a unique solution — and, if not, identify 
the cause of non-existence or non-uniqueness? In short, we consider those aspects of linear systems 
which are necessary precursors to numerical solution. 

We consider a linear system of n equations in n unknowns: given an n × n matrix A and an 
n × 1 vector f , we wish to find an n × 1 vector u such that Au = f . In this nutshell we shall address 
the following topics related to this system of equations: 

We demonstrate the process by which we express a mathematical model in terms of the system 
matrix A, force vector f , and solution vector u: equations to rows; unknowns to columns. By 
way of illustration we consider systems of springs and masses connected in various topologies. 

We introduce the notion of sparsity, discuss the prevalence and origin of sparsity in mathe
matical models of physical systems, and provide several examples of sparse matrices A arising 
in the analysis of simple mechanical systems. 

We define the properties of Symmetric Positive-Definite (SPD) matrices, present a physi
cal interpretation of “SPDicity” in terms of potential (elastic) energy, and provide several 
examples of SPD matrices A which arise in the analysis of simple mechanical systems. 

We discuss the existence and uniqueness of solutions to the equation Au = f for n = 2 
equations in n = 2 unknowns. We identify three cases: Au = f admits a unique solution; 
Au = f has an infinity of solutions; Au = f has no solution. We provide in each case 
geometric interpretations from both a row perspective and a column perspective. 

We state the necessary and sufficient conditions under which Au = f admits a unique solution: 
A has n independent columns; A has n independent rows; the inverse of A, A−1, exists; the 
determinant of A is nonzero; A has no zero eigenvalues. We also emphasize an important 
sufficient condition: A is SPD. 

We provide a detailed example — a system of two masses and two springs — for which 
we can understand the cause of non-existence and non-uniqueness, and the general form of 
non-unique solutions, in terms of deficiencies in the underlying mathematical model of our 
physical system. 
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We do not consider here computational methods for the solution of linear systems of equations. 

Prerequisites: matrix and vector operations; “2 × 2” linear algebra: linear independence, the ma
trix inverse, eigenvalues and eigenvectors, the determinant; elementary mechanics: force balances, 
Hooke’s Law. 

2 A Model Equilibrium Problem 

2.1 Description 

We will introduce here a simple system of springs and masses, shown in Figure 1, which will serve 
throughout this nutshell to illustrate various concepts associated with linear systems. Mass 1 has 
mass m1; Mass 1 is connected to a stationary wall by a spring with stiffness k1, and to Mass 2 by 
a spring with stiffness k2. Mass 2 has mass m2; Mass 2 is connected only to Mass 1 (by the spring 
with stiffness k2). We shall assume that k1 ≥ 0 and k2 ≥ 0. 

Figure 1: A system of two masses and two springs anchored to a single wall. 

We denote the displacements of Mass 1 and Mass 2 by u1 and u2, respectively: positive values 
correspond to displacement away from the wall; we choose our reference such that in the absence 
of applied forces — the springs unstretched — u1 = u2 = 0. We next introduce (steady) forces f1 

and f2 on Mass 1 and Mass 2, respectively; positive values correspond to force away from the wall. 
We would like to find the equilibrium displacements of the two masses, u1 and u2, for prescribed 
forces f1 and f2. 

We note that while all real systems are inherently dissipative and therefore are characterized 
not just by springs and masses but also dampers, the dampers (or damping coefficients) typically 
do not affect the system at equilibrium — since d/dt vanishes in the steady state — and hence for 
equilibrium considerations we may neglect losses. Of course, it is damping which ensures that the 
system ultimately achieves a stationary (time-independent) equilibrium. 

We now derive the equations which must be satisfied by the displacements u1 and u2 at equi
librium. We first consider the forces on Mass 1, as shown in Figure 2. Note we apply here Hooke’s 
law — a constitutive relation — to relate the force in the spring to the compression or extension 
of the spring. In equilibrium the sum of the forces on Mass 1 — the applied forces and the forces 
due to the spring — must sum to zero, which yields 

f1 − k1 u1 + k2(u2 − u1) = 0 . 

(More generally, for a system not in equilibrium, the right-hand side would be m1ü1 rather than 
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Figure 2: The forces on Mass 1. 

zero.) A similar identification of the forces on Mass 2, shown in Figure 3, yields for force balance 

f2 − k2(u2 − u1) = 0 . 

This completes the physical statement of the problem. 

Figure 3: The forces on Mass 2. 

Mathematically, our equations correspond to a system of n = 2 linear equations, more precisely, 
2 equations in 2 unknowns: 

(k1 + k2) u1 − k2 u2 = f1 , (1) 

−k2 u1 + k2 u2 = f2 . (2) 

Here u1 and u2 are unknown, and are placed on the left-hand side of the equations, and f1 and 
f2 are known, and placed on the right-hand side of the equations. In this nutshell we ask several 
questions about this linear system — and more generally about linear systems of n equations in 
n unknowns. First, existence: when do the equations have a solution? Second, uniqueness: if 
a solution exists, is it unique? Although these issues appear quite theoretical, in most cases the 
mathematical subtleties are in fact informed by physical (modeling) considerations. 

To achieve these goals we must first express these equations in matrix form in order to best 
take advantage of both the theoretical and practical machinery of linear algebra. We write our two 
equations in two unknowns as Ku = f , where K is a 2 × 2 matrix, u = (u1 u2)

T is a 2 × 1 vector, 
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Figure 4: A system of two masses and three springs anchored to two walls. We shall assume that 
k1 ≥ 0, k2 ≥ 0, and k3 ≥ 0. 

and f = (f1 f2)
T is a 2 × 1 vector. The elements of K are the coefficients of (1) and (2): 

unknown known ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎝ 
k1 + k2 −k2 ⎠ ⎝ 

u1 ⎠ = ⎝ 
f1 ⎠ 

← Equation (1) 
. 

−k2 k2 u2 f2 ← Equation (2) (3) 

K u f 

2 × 2 2 × 1 2 × 1 

We briefly review the connection between equations (3) and (1)-(2). We first note that Ku = f 
implies equality of the two vectors Ku and f and hence equality of each component of Ku and 
f . The first component of the vector Ku, from the row interpretation of matrix multiplication,1 is 
given by (k1 + k2)u1 − k2u2; the first component of the vector f is of course f1. We thus conclude 
that (Ku)1 = f1 correctly reproduces equation (1). A similar argument reveals that (Ku)2 = f2 

correctly reproduces equation (2). Here (Ku)i, i = 1, 2, refers to the ith element of the 2 × 1 vector 
Ku. 

CYAWTP 1. Consider the system of three springs and two masses shown in Figure 4. Provide 
the elements of the 2 × 2 matrix K, expressed in terms of k1, k2, and k3, such that the equilibrium 
displacement 2 × 1 vector u satisfies Ku = f . Note here f = (f1 f2)

T . 

2.2 SPD Property 

A real n × n matrix A is symmetric positive-definite (SPD) if and only if A is symmetric, 

AT = A , (4) 

and A is positive-definite, 

v TAv > 0 for any n × 1 vector v  = 0 . (5) 

Note that Av is an n × 1 vector and hence vT(Av) is a scalar — a real number. Note also that 
the positive-definite property (5) implies that if vTAv = 0 then v must be the zero vector. We 
emphasize that a matrix A must satisfy both conditions, (4) and (5), to qualify as SPD. There are 
many implications of the SPD property, all very pleasant. 

1In many, but not all, cases it is more intuitive to develop matrix equations from the row interpretation of matrix 
multiplication; however, as we shall see, the column interpretation of matrix multiplication can be enlightening from 
the theoretical perspective. 
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Figure 5: The system of springs and masses of Figure 1 subject to imposed displacement v. 

We shall illustrate the SPD property for the 2 × 2 matrix K associated with our simple spring 
system of (3). We shall further suppose here that our spring constants k1 and k2, are strictly 
positive:   

k1 + k2 −k2 
K ≡

−k2 k2
for k1 > 0 , k2 > 0 . (6) 

We may now ask: does A ≡ K of (6) satisfy (4)-(5)? We can directly ascertain, from inspection, 
that K of (6) is symmetric: K − KT = 0. It remains to determine if K of (6) is positive-definite. 

Towards that end, we form the scalar vTKv as       
k1 + k2 −k2 v1 (k1 + k2)v1 − k2v2 v TKv = (v1 v2) = (v1 v2) −k2v1 + k2v2−k2 k2 v2     

Kv 

2 2 2 2 2 = v = v v1 (k1 + k2) − v1v2k2 − v2v1k2 + v2 k2 1k1 + 1 − 2v1v2 + v2 k2 

2 = k1v1 + k2(v1 − v2)
2 . (7) 

2We can immediately conclude, since k1 > 0, k2 > 0, v1 ≥ 0, and (v2 − v1)2 ≥ 0, that (a) vTKv ≥ 0 
for all v. It remains to demonstrate that vTKv = 0 only if v = 0. We first note that if vTKv = 0 

2 2then v1 = 0: vTKv = k1v1 + k2(v2 − v1)2 ≥ k1v1 (since k2 > 0 and (v2 − v1)2 ≥ 0) > 0 unless v1 = 0 
2(since k1 > 0). Similarly, we note that if vTKv = 0 then v2 − v1 = 0: vTKv = k1v1 + k2(v2 − v1)2 ≥ 

2k2(v2 − v1)2 (since k1 > 0 and v ≥ 0) > 0 unless v2 = v1 (since k2 > 0). Thus vTKv = 0 implies 1 
v1 = 0 and v2 − v1 = 0 and hence v1 = v2 = 0, which we may summarize as (b) vTKv = 0 only if 
v = (v1 v2)

T = 0. We conclude from (a) and (b) that K of (6) is SPD: vTKv > 0 for all v = 0. 
We can readily identify a connection between the SPD property of the “stiffness” matrix K, 

(6), and the energy of the associated physical system (depicted in Figure 1). We first introduce 
an arbitrary imposed displacement vector, v = (v1 v2)

T, on our springs, as depicted in Figure 5. 
We next note that the potential energy in our spring system associated with this displacement v is 
given by 

1 1 12PE (potential, or elastic, energy) ≡ k1v + k2(v2 − v1)
2 = v TKv ;12 2 2        

energy in energy in 
Spring 1 Spring 2 
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the last equality follows from (7). For positive spring constants we know that any stretching of either 
spring will result in positive potential energy: a physical “proof” that K of (6) is positive-definite. 

CYAWTP 2. Consider again the matrix K of (3) but now for k1 > 0 and k2 = 0. Show that K 
is not SPD (note to prove that a matrix A is not positive-definite, you need find only one example 
of a nonzero v for which vTAv ≤ 0). Identify a displacement v for which vTKv = 0, and interpret 
your result in terms of potential energy. 

CYAWTP 3. Consider the matrix K of CYAWTP 1 for k1 > 0, k2 > 0, and k3 > 0. Demonstrate 
that K is SPD. Express the potential energy in the springs for an imposed displacement 2×1 vector 
v in terms of K and v. 

CYAWTP 4. Consider the four matrices 

2 −1 2 −1 1 −9 10 −9 
A(1) ≡ A(2) ≡ A(3) ≡ A(4) ≡, , , . 

−1 −1 1 1 −9 1 −9 9 

In each of these four cases, is the matrix symmetric? symmetric positive-definite (SPD)? 

Finally, we close this discussion with a connection to eigenvalues: if a matrix A is symmetric 
then A has all real eigenvalues; a symmetric matrix A is furthermore positive-definite, hence SPD, 
if and only if A has all (real) positive eigenvalues. This provides another test for SPDicity: a matrix 
A is SPD if and only if A is symmetric, AT = A, and all the eigenvalues of A are positive. 

3 Existence and Uniqueness: n = 2 

3.1 Problem Statement 

We shall now consider the existence and uniqueness of solutions to a general system of (n =) 2 
equations in (n =) 2 unknowns. We first introduce a matrix A and vector f as ⎛ ⎞ 

A11 A12 ⎝ ⎠2 × 2 matrix A = 
A21 A22 

;⎛ ⎞ 
f1 ⎝ ⎠2 × 1 vector f = 
f2 

our equation for the 2 × 1 unknown vector u can then be written as ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎫ 
A11 A12 u1 f1 A11u1 + A12u2 = f1 ⎬ ⎝ ⎠⎝ ⎠ = ⎝ ⎠Au = f , or , or . ⎭A21 A22 u2 f2 A21u1 + A22u2 = f2 

Note these three expressions are equivalent statements proceeding from the more abstract to the 
more concrete. 
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uu ==
uu11

uu22

vv11

vv22

eqn 11

AA1111vv11++AA1212vv22 == ff11

or vv22 ==
ff11

AA1212
−− AA1111

AA1212
vv11

AA2121vv11++AA2222vv22 == ff22

or vv22 ==
ff22

AA2222
−− AA2121

AA2222
vv11

eqn 22

Figure 6: Row perspective: the solution u is the intersection of two straight lines. 

3.2 Row View 

We first consider the row view, similar to the row view of matrix multiplication. In this perspective 
we consider our solution vector u = (u1 u2)

T as a point (u1, u2) in the two dimensional Cartesian 
plane; a general point in the plane is denoted by (v1, v2) corresponding to a vector (v1 v2)

T . In 
particular, u is the point in the plane which lies both on the straight line described by the first 
equation, (Av)1 = f1, denoted ‘eqn1’ and shown in Figure 6 in blue, and on the straight line 
described by the second equation, (Av)2 = f2, denoted ‘eqn2’ and shown in Figure 6 in green. (We 
depict in Figure 6 the case in which u exists and is unique.) 

eqn 11

eqn 22
eqn 11,, eqn 22all points on line satisfy both

eqn 11

eqn 22

no points satisfy both

(i) (ii) (iii) 

exists , exists , exists ) 
unique , unique ) qqqqunique 

Figure 7: Row perspective: three possibilities for existence and uniqueness. 

We directly observe three possibilities, familiar from any first course in algebra; these three 
cases are shown in Figure 7. In case (i), the two lines are of different slope and there is clearly one 
and only one intersection: the solution thus exists and is furthermore unique. In case (ii) the two 
lines are of the same slope and furthermore coincident: a solution exists, but it is not unique — 
in fact, there are an infinity of solutions. This case corresponds to the situation in which the two 
equations in fact contain identical , hence redundant, information. In case (iii) the two lines are of 
the same slope but not coincident: no solution exists (and hence we need not consider uniqueness). 
This case corresponds to the situation in which the two equations contain inconsistent information. 

We see that the condition for (both) existence and uniqueness is that the slopes of ‘eqn1’ 
and ‘eqn2’ must be different. We can summarize this condition in terms of the elements of A: 
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A11/A12 = A21/A22, or 

A11A22 − A12A21 = 0 .	 (8) 

(Note the cases A12 = 0 or A22 = 0 must be considered separately, but we arrive at the same 
conclusion, (8).) We emphasize that Au = f has a unique solution if and only if (8) is satisfied: 
equation (8) is a necessary and sufficient condition for existence and uniqueness.2 If the condition 
(8) is not satisfied, then either there is an infinity of solutions, case (ii ), or no solution, case (iii ). 

We close with several necessary and sufficient conditions for existence and uniqueness, all of 
which can be derived (in our 2 × 2 context) from the condition (8): 

1.	 The rows of A are linearly independent. We denote the first and second row vectors of A as 
1 2	 1 21 × 2 vectors q ≡ (A11 A12) and q ≡ (A21 A22), respectively. We note that q and q

are linearly independent only if there exists no constant c such that q1 = cq2 . The latter, in 
turn, is equivalent to the condition A21/A11 = A22/A12, which then reduces to (8). 

2. The matrix A is invertible. 3 We recall that the inverse of a 2 × 2 matrix A is given by 

1 A22 −A12 
A−1 = . (9)

A11A22 − A12A21 −A21 A11 

We observe that if and only if (8) is satisfied can we form this inverse. (We may then express 
our unique solution as u = A−1f , though in computational practice this formula is rarely 
invoked.) Some vocabulary: if A exists, we say that A is invertible or non-singular ; if A−1 

does not exist, we say that A is singular . 

3.	 The determinant of A is nonzero. We recall that the determinant of a 2 × 2 matrix is given 
by det(A) ≡ A11A22 − A21A12. Hence det(A) = 0 is equivalent to our condition (8). (The 
determinant condition is not practical computationally, and serves primarily as a convenient 
“by hand” check for very small systems.) 

If any (and hence, by equivalence, all) of these conditions is not satisfied, then our system Au = f 
has either an infinity of solutions or no solution, depending on the particular form of f relative to 
A. 

3.3 The Column View 

We next consider the column view, analogous to the column view of matrix multiplication. In 
particular, we recall from the column view of matrix-vector multiplication that we can express Au 
as ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ 

A11 A12 u1 A11 A12 
Au = ⎝ ⎠⎝ ⎠ = ⎝ ⎠ u1 + ⎝ ⎠ u2 

A21 A22 u2 A21 A22 , 

p1 p2 

2We recall that “B if A,” or “if A then B,” or “A ⇒ B,” indicates that A is a sufficient condition for B and that B 
is a necessary condition for A. It follows that “B if and only if A,” or “A ⇒ B and B ⇒ A,” or “A ⇔ B,” indicates 
that A is a necessary and sufficient condition for B (and also vice versa): A and B are equivalent. 

3A more practical embodiment of this condition, related to the pivots of Gaussian Elimination, is also available. 
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where p1 and p2 are the first and second columns of A, respectively. Our system of equations can 
thus be expressed as 

1 2Au = f ⇔ p u1 + p u2 = f . 

Thus the question of existence and uniqueness can be stated alternatively: is there a (unique?) 
combination u of columns p1 and p2 which yields f? 

We start by answering this question pictorially in terms of the familiar parallelogram construc
tion of the sum of two vectors. To recall the parallelogram construction, we first consider in detail 
the case shown in Figure 8. We see that in the instance depicted in Figure 8 there is clearly a 

1 2unique solution: we choose u1 such that f − u1p is parallel to p (there is clearly only one such 
2 1value of u1); we then choose u2 such that u2p = f − u1p . 

pp22

uu22 pp22

ff

uu11 pp11 pp11

ff −− uu11 pp11 pp22

Figure 8: Column perspective: the solution u is a linear combination of the columns of A. 

We can then identify, in terms of the parallelogram construction, three possibilities; these three 
cases are shown in Figure 9. Here case (i) is the case already discussed in Figure 8: a unique 
solution exists. In both cases (ii) and (iii) we note that 

2 p = γp1 ⇔ p 2 − γp1 = 0 ⇔ p 1 and p 2 are linearly dependent 

for some scalar γ; in other words, p1 and p2 are colinear — the two vectors point in the same 
direction to within a sign (though p1 and p2 may of course be of different magnitude). We now 
discuss cases (ii ) and (iii ) in more detail. 

pp22

ff

pp11

pp22

ff

pp11

pp22

ff

pp11*

forfor ananyy vv11

ff −− vv11pp
11 ∦∦ toto pp22

(i) (ii) (iii) 

exists , exists , exists ) 
unique , unique ) qqqqunique 

Figure 9: Column perspective: three possibilities for existence and uniqueness. 

2 1In case (ii), p1 and p are colinear, but also f is colinear with p (and p2) — say f = βp1 for 
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some scalar β. We can thus write 

f =p 1 · β + p 2 · 0 ⎛ ⎞ ⎛ ⎞⎛ ⎞ 
β A11 A12 β 

1 2= p p ⎝ ⎠ = ⎝ ⎠⎝ ⎠ = Au ∗ ,
0 A21 A22 0 

∗u 

∗and hence u is a solution of Au = f . However, we also know that −γp1 + p2 = 0, and thus 

1 20 =p · (−γ) + p · (1) ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ 
−γ A11 A12 −γ −γ 

= p1 p2 ⎝ ⎠ = ⎝ ⎠⎝ ⎠ = A ⎝ ⎠ .
1 A21 A22 1 1 

Thus, for any α, ⎛ ⎞ 
−γ 

∗ ⎝ ⎠u = u + α 
1 

infinity of solutions 

satisfies Au = f , since ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ 
−γ −γ⎜ ∗ ⎟ ⎜ ⎟

A ⎝u + α ⎝ ⎠⎠ = Au ∗ + A ⎝α ⎝ ⎠⎠
1 1 

⎛ ⎞ 
−γ 

= Au ∗ + αA ⎝ ⎠ = f + α · 0 = f .
1 

This demonstrates that in case (ii) there are an infinity of solutions parametrized by the arbitrary 
1constant α. This makes sense: since p , p2, and f are all co-linear, we can represent f by some 

1multiple of p1, some multiple of p2, or an infinite number of (the right) combinations of p and 
2p . Note that the vector (−γ 1)T is an eigenvector of A corresponding to a zero eigenvalue.4 By 

definition the matrix A “has no effect” on an eigenvector associated with a zero eigenvalue, and 
it is for this reason that if we have one solution to Au = f then we may add to this solution any 
multiple — here α — of the zero-eigenvalue eigenvector to obtain yet another solution. 

Finally, we consider case (iii). In this case it is clear from our parallelogram construction that 
1for no choice of v1 will f − v1p1 be parallel to p2, and hence for no choice of v2 can we form f − v1p

2as v2p . Put differently, a linear combination of two colinear vectors p1 and p2 can not combine to 
2form a vector perpendicular to both p1 and p . Thus no solution exists. 

We now append two new entries to our list of necessary and sufficient conditions for the existence 
and uniqueness of a solution u to Au = f : 

4All scalar multiples of this eigenvector define what is known as the right nullspace of A. 
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4. The columns of A are independent. We have already provided the demonstration.
 

5.	 All the eigenvalues of A are nonzero. A sketch of the proof: A can have a zero eigenvalue if 
and only if the columns of A are linearly dependent; hence, if A has no zero eigenvalues, the 
columns of A must be linearly independent. 

If any (and hence, by equivalence, all) of these conditions is not satisfied, then Au = f may have 
either many solutions or no solution, depending on the form of f . Furthermore, thanks to our 
column and eigenvector perspectives, we now understand the conditions on f such that a solution 
may exist, and the form of the general family of solutions in the case of non-uniqueness. 

Finally, we close this section with a very useful sufficient condition for existence: if A is SPD, 
then Au = f has a unique solution. The proof is simple: if A is SPD, then all the eigenvalues 
of A are positive. (Note that SPDicity is, of course, not a necessary condition for existence and 
uniqueness: a matrix need not be SPD to be non-singular.) 

CYAWTP 5. Revisit the system of springs and masses depicted in Figure 4 and described by the 
system of equations Ku = f as formulated in CYAWTP 1. Consider the case k1 > 0, k2 > 0, k3 > 
0 analyzed in CYAWTP 3. Does Ku = f have a unique solution? 

CYAWTP 6. Consider the 2 × 2 system of equations Au = f for 

2 −1 

A = 2 . (10)
11 4 

1First consider f = (1 2 )
T . Does a solution exist? If so, find the most general form of the solution. 

Depict Au = f in terms of the row perspective and also the column perspective: construct figures 
analogous to Figure 7 and Figure 9, respectively. Now repeat the analysis but for f = (1 1)T . 

3.4 A Tale of Two Springs 

wall

kk11

ff11

uu11

mm11

ff22

uu22

mm22

kk22 f = 

⎛ ⎝ 
f1 

f2 

⎞ ⎠ , u = 

⎛ ⎝ 
u1 

u2 

⎞ ⎠ 

given to find 

Figure 10: A system of two springs and two masses: given f , we wish to find u. 

We now interpret our results for existence and uniqueness for a mechanical system — our two 
springs and masses — to understand the connection between the mathematical model and the 
theory for existence and uniqueness. We again consider our two masses and two springs, shown in 
Figure 10, governed by the system of equations ⎛ ⎞ 

k1 + k2 −k2 
Au = f for A = K ≡ ⎝ ⎠ for k1 ≥ 0 , k2 ≥ 0 . (11) 

−k2 k2 
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We analyze three different scenarios for the spring constants and forces, denoted (I), (II), and (III), 
which we will see correspond to cases (i), (ii), and (iii), respectively, as regards existence and 
uniqueness. We present first (I), then (III), and then (II), as this order is more physically intuitive. 

(I) In scenario (I)	 we choose k1 = k2 = 1 (more physically we would take k1 = k2 = k for 
some value of k expressed in appropriate units — but our conclusions will be the same) and 
f1 = f2 = 1 (more physically we would take f1 = f2 = f for some value of f expressed in 
appropriate units — but our conclusions will be the same). In this case our matrix A and 

1 2	 1 2associated column vectors p and p take the form shown below. It is clear that p and p
are not colinear and hence a unique solution exists for any f . We are in case (i). 

⎛ ⎞ 
2 −1 

A = ⎝ ⎠ ⇒ 
−1 1 

case (i): exists ,, unique , 

(III) In scenario (III) we chose	 k1 = 0, k2 = 1 and f1 = f2 = 1. In this case our vector f and 
matrix A and associated column vectors p1 and p2 take the form shown below. It is clear 
that a linear combination of p1 and p2 can not possibly represent f — and hence no solution 
exists. We are in case (iii). 

⎛ ⎞ ⎛ ⎞ 
1 1 −1 

f = ⎝ ⎠ , A = ⎝ ⎠ ⇒ 

pp22
ff

pp11

1 −1 1 
case (iii): exists ), qqqqunique 

We can readily identify the cause of the difficulty. For our particular choice of spring constants 
in scenario (III) the first mass is no longer connected to the wall (since k1 = 0); thus our 
spring system now appears as in Figure 11. We see that there is a net force on our system 
(of two masses) — the net force is f1 + f2 = 2 = 0 — and hence it is clearly inconsistent 
to assume equilibrium.5 In even greater detail, we see that the equations for each mass are 
inconsistent with equilibrium (note fspr = k2(u2 − u1)) and hence must be supplemented with 
respective mass × acceleration terms. At fault here is not the mathematics, but rather the 
model provided for the physical system. 

5In contrast, in scenario (I), the wall provides the necessary reaction force in order to ensure equilibrium. 
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Figure 11: Scenario III: no solution. 

(II) In this scenario we choose k1 = 0, k2 = 1 and f1 = 1, f2 = −1. In this case our vector f and 
matrix A and associated column vectors p1 and p2 take the form shown below. It is clear 
that a linear combination of p1 and p2 now can represent f — and in fact there are many 
possible combinations. We are in case (ii). 

⎛ ⎞ ⎛ ⎞ 
−1 1 −1 

f = ⎝ ⎠ , A = ⎝ ⎠ ⇒ 

pp22

ff

pp11

1 −1 1 
case (ii): exists ,, unique ) 

We can explicitly construct the family of solutions from the general procedure described 
earlier: 

⎛ ⎞ 
−1 

2 1 ∗ p = −1 p , f = −1 p 1 ⇒ u = ⎝ ⎠ , 
0γ β 

and hence ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ 
−γ −1 1 

∗ ⎝ ⎠ = ⎝ ⎝ ⎠u = u + α ⎠ + α 
1 0 1 

for any α. Let us check the result explicitly: ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ 
−1 α 1 −1 −1 + α (−1 + α) − α −1⎜ ⎟

A ⎝⎝ ⎠ + ⎝ ⎠⎠ = ⎝ ⎠⎝ ⎠ = ⎝ ⎠ = ⎝ ⎠ = f , 
0 α −1 1 α (1 − α) + α 1 
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as desired. Note that the zero-eigenvalue eigenvector here is given by (−γ 1)T = (1 1)T (to 
within an arbitrary multiplicative constant) and corresponds to an equal translation in both 
displacements, which we will now interpret physically. 

Figure 12: Scenario II: an infinity of solutions. (Note on the left mass the f1 arrow indicates the 
direction of the force f1 = −1, not the direction of positive force.) 

In particular, we can readily identify the cause of the non-uniqueness. For our choice of spring 
constants in scenario (II) the first mass is no longer connected to the wall (since k1 = 0), 
just as in scenario (III). Thus our spring system now appears as in Figure 12. But unlike 
in scenario (III), in scenario (II) the net force on the system is zero — f1 and f2 point in 
opposite directions — and hence an equilibrium is possible. Furthermore, we see that each 
mass is in equilibrium for a spring force fspr = 1. Why then is there not a unique solution? 
Because to obtain fspr = 1 we may choose any displacements u such that u2 − u1 = 1 (for 
k2 = 1): the system is not anchored to wall — it just floats — and thus equilibrium is 
maintained if we translate both masses by the same displacement (our eigenvector) such that 
the “stretch” u2 −u1 remains invariant. This is illustrated in Figure 13, in which α is the shift 
in displacement. Note α is not determined by the equilibrium model; α could be determined 
from a dynamical model and in particular would depend on the initial conditions and the 
damping in the system. 

CYAWTP 7. Show that the matrix K associated with Scenarios (II) and (III) is not SPD. Find 
a displacement vector v for which vTKv = 0, and interpret your result in terms of the potential 
energy of the system. 

CYAWTP 8. Retell the “Tale” of this section but now in Scenarios (II) and (III) consider spring 
constants k1 = 1, k2 = 0 and applied forces f = (−1 0)T in Scenario (II) and f = (−1 1)T in 
Scenario (III). Provide column-perspective sketches of Scenarios (II) and (III) and find, in Scenario 
(II), the form of the most general solution. 

CYAWTP 9. Revisit the system of springs and masses depicted in Figure 4 and described by the 
system of equations Ku = f as formulated in CYAWTP 1. In which of following situations will 
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4 

a solution another solution (α > 0)
 

u = u ∗ = 

⎛ ⎝ 
−1 

0 

⎞ ⎠ u = u ∗ + α 

⎛ ⎝ 
1 

1 

⎞ ⎠ 

⎛ ⎞ ⎛ ⎞ 
−1
 α
⎜⎜⎝ 

⎜⎜⎝ 
⎟⎟⎠ 

⎟⎟⎠ 
0 α 

Figure 13: Scenario (II): the origin of non-uniqueness. 

Ku = f admit a unique solution: k1 = 0, k2 > 0, k3 > 0? k1 > 0, k2 = 0, k3 > 0? k1 > 0, k2 > 
0, k3 = 0? k1 = 0, k2 > 0, k3 = 0? 

“Large” Spring-Mass Systems 

…

Figure 14: A system of n springs and n masses. 

We now consider the equilibrium of the system of n springs and n masses shown in Figure 14. 
(This string of springs and masses in fact is a model, or discretization, of a continuum truss; each 
spring-mass is a small segment of the truss.) Note for n = 2 we recover the small system studied in 
the preceding sections. This larger system will serve as a more “serious” model problem as regards 
matrix formation and structure but also existence and uniqueness. 

To derive the equations we first consider the force balance on Mass 1, 

f1 − k1u1 + k2(u2 − u1) = 0 , 

and then on Mass 2, 

f2 − k2(u2 − u1) + k3(u3 − u2) = 0 , 
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and then on a typical interior Mass i, 

fi − ki(ui − ui−1) + ki+1(ui+1 − ui) = 0 , 2 ≤ i ≤ n − 1 , 

and finally on Mass n, 

fn − kn(un − un−1) = 0 . 

We can write these equations as 

(k1 + k2)u1 − k2u2 0 . . . = f1 

− k2u1 + (k2 + k3)u2 − k3u3 0 . . . = f2 

0 − k3u2 + (k3 + k4)u3 − k4u4 = f3 

. . . 
. . . 

. . . 0 − knun−1 + knun = fn 

or
 ⎞⎛ ⎞⎛⎞⎛ 
k1 + k2 −k2 u1 f1⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
 

u2 

u3 

.
 .
 .
 

un−1 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
 

=
 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
 

f2 

f3 

.
 .
 .
 

fn−1 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
 

−k2 k2 + k3 −k3 0 
−k3 k3 + k4 −k4 

. . . . . . . . .
 

0
 
−kn 

−kn kn 
un fn 

K u f 
n × n n × 1 n × 1 

which is simply Au = f (with A ≡ K) but now for n equations in n unknowns. 
In fact, the matrix K has a number of special properties. First, and perhaps most importantly 

from the computational perspective, K is sparse: K is mostly zero entries, since only “nearest 
neighbor” connections affect the spring displacement and hence the force in the spring.6 This spar
sity property is ubiquitous both in lumped MechE systems but also in discretizations of continuous 
MechE systems. Second, K is tri-diagonal : the nonzero entries are all on the main diagonal and on 
the diagonals just below and just above the main diagonal. (Note a tri-diagonal matrix is not any 
matrix for which only three diagonals are populated with nonzero entries: the populated diagonals 
must be the main diagonal and the diagonals immediately below and above the main diagonal.) 
Third, K is symmetric and positive-definite: respectively, KT = K, and 1 (vTKv) (the potential, or 2 
elastic, energy of the system) is positive for any non-zero displacement v. Some of these properties 
are important to establish existence and uniqueness, as discussed in the next section; some of the 
properties are important in the efficient computational solution of Ku = f . 

6This is not to say that a force applied on Mass i results in a displacement only of Mass i: we refer here to the 
local nature of the equations, not the local nature of the solutions. 
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…

Figure 15: A “cyclic” system of n springs and masses. 

CYAWTP 10. Consider the spring-mass system of Figure 15 in which, in addition to the usual 
nearest-neighbor connections, the first and last masses are also connected: a “cyclic” arrangement. 
We can form an n × n matrix K and n × 1 vector f such that the equilibrium displacement (n × 1 
vector) u satisfies Ku = f : for i = 1, . . . , n, the ith equation, (Ku)i = fi, expresses the force 
balance on Mass i, where (Ku)i refers to the ith element of the n × 1 vector Ku. Find the entries 

thof the 1st row of K (associated with the force balance on Mass 1). Find the entries of the n row 
of K (associated with the force balance on Mass n). Find the total number of nonzero entries in 
the matrix K as a function of n. Is the matrix K tri-diagonal? Is the matrix K symmetric? 

kk == 11

wall

uu33

mm

uu44

mm

uunn

mmnn

uu22

mm22

kk == 11 kk == 11 kk == 11 kk == 11 kk == 11 kk == 11

uu11

mm11

ff11 == 11 ff22 == 11 ff33 == 11 ff44 == 11 ffnn == 11

kk == 11

kk == 11

kk == 11

kk == 11 kk == 11

Figure 16: A system of n springs and masses with nearest-neighbor and also next-to-nearest
neighbor connections. 

CYAWTP 11. Consider the spring-mass system of Figure 16 in which the springs are connected 
not only to nearest neighbors but also to next-to-nearest neighbors. We can form an n × n matrix 
K and n × 1 vector f such that the equilibrium displacement (n × 1 vector) u satisfies Ku = f : 
for i = 1, . . . , n, the ith equation, (Ku)i = fi, expresses the force balance on Mass i, where (Ku)i 
refers to the ith element of the n × 1 vector Ku. Find the entries of the 2nd row of K (associated 
with the force balance on Mass 2). Find the entries of the 3rd row of K (associated with the force 
balance on Mass 3). The total number of non-zero entries in the matrix K asymptotes to Cn as 
n → ∞ for some constant C independent of n: find C. (Note since we consider n → ∞ you may 
neglect end effects due to Mass n − 1 and Mass n.) Is the matrix K tri-diagonal? Is the matrix K 
symmetric? 
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Existence and Uniqueness: General Case 

We now consider a general (square) system of n equations in n unknowns, 

A u = f , (12) 

given to find given 

where A is n × n, u is n × 1, and f is n × 1. As you might suspect from our argument for the 2 × 2 
case, if A has n independent columns then Au = f has a unique solution u for any f . If A does 
not have n independent columns, then Au = f will either have no solution or — if f has the right 
form — an infinity of solutions. 

CYAWTP 12. Consider (12) for the case n = 3. We denote the three columns of the matrix A 
1by the 3 × 1 vectors p , p2, and p3, respectively. We shall assume that p1 and p2 are independent. 

In each of the four cases below, 

1. (p1 × p2) · p3 = 0 and (p1 × p2) · f = 0, 

2. (p1 × p2) · p3 = 0 and (p1 × p2) · f = 0, 

3. (p1 × p2) · p3 = 0 and (p1 × p2) · f = 0, 

4. (p1 × p2) · p3 = 0 and (p1 × p2) · f = 0, 

indicate whether Au = f has a unique solution, no solution, or an infinity of solutions. Provide a 
sketch of each situation. Note that × and · refer respectively to the cross product and dot product 
in 3-space. 

There are in fact many necessary and sufficient conditions for existence and uniqueness of a 
solution u to Au = f : A has n independent columns; A has n independent rows; A is invertible (non
singular); A has nonzero determinant; A has no zero eigenvalues. In addition, there is an important 
sufficient but not necessary condition: A is SPD. In one or another situation one or another of these 
conditions might be easier to verify; we need only confirm one necessary or sufficient condition and 
then all the necessary conditions are perforce satisfied. In the event that any, and hence all, of the 
necessary conditions are not satisfied, then Au = f will have either no solution or — if f has the 
right form — an infinity of solutions. (Note in the computational context we must also understand 
and accommodate “nearly” singular systems.) In short, all of our conclusions for n = 2 directly 
extend to the case of general n. 

Perspectives 

Our presentation in this nutshell is quite restrictive from both the practical and theoretical per
spectives. 

From the practical side, we formulate our matrices “by hand.” In actual engineering practice, in 
particular for larger systems, there are automated procedures by which to construct a system matrix 
from constituent component matrices. These methods, which go by different names (“stamping,” 
“direct stiffness assembly,”. . . ) in different communities, are applicable to lumped systems as well 
as discretizations of continuous systems. 
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From the theoretical perspective, our extrapolation from 2 × 2 systems to n × n systems omits 
many of the subtleties associated with existence and in particular uniqueness. For a complete 
description of existence and uniqueness, in terms of the four fundamental spaces associated with 
a matrix, we recommend G Strang, “Introduction to Linear Algebra,” 4th Edition, Wellesley-
Cambridge Press and SIAM, 2009. 
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